www.publish.csiro.au/journals/asb

Polyaperturate pollen types and ratios of heteromorphism in the monocot genus *Conostylis* (Haemodoraceae)

Nuri B. Pierce^{A,B} and Michael G. Simpson^A

^ADepartment of Biology, San Diego State University, San Diego, CA 92182-4614, USA. ^BCorresponding author. Email: nuribpierce@gmail.com

Abstract. Pollen aperture heteromorphism (variation of aperture number in pollen grains within each flower and in all plants of a taxon) is described in the diverse monocot genus *Conostylis* R.Br. (Haemodoraceae) and that of related genera, all endemic to Western Australia. We report results of pollen observations from 153 specimens. In *Conostylis*, aperture number varies greatly, with biporate, triporate, tetraporate and polyporate pollen present, features considered rare and possibly developmentally significant for monocots. Pollen aperture types and their ratios in this genus are stable and consistent within species and subspecies groupings and phylogenetically informative.

Introduction

The Haemodoraceae R.Br. are a small family of 14 genera and ~ 100 species of monocots, members of which are native to Australia, southern Africa, northern South America to southern Mexico, some Caribbean islands and eastern to south-eastern North America (Simpson 1998). Family members are characterised as perennial herbs with unifacial leaves, capsular fruits and the consistent occurrence of arylphenalenone chemical compounds (Cooke and Segal 1955; Cooke *et al.* 1958; Cooke and Edwards 1981; Opitz and Schneider 2002; Opitz *et al.* 2003), the latter only sparingly found in some closely related families. Floral morphology is tremendously variable in the family, with members differing, among other features, in perianth symmetry and fusion, stamen number, ovary position, septal nectary anatomy and ovule number (Simpson 1993, 1998).

Simpson (1990), in a phylogenetic analysis of the family Haemodoraceae using morphological data, determined the monophyly of the family and its division into two tribes (now treated as subfamilies), necessitating the transfer of Phlebocarya R.Br. from Haemodoroideae to Conostylidoideae, in agreement with McFarlane et al. (1987). Hopper et al. (1999), in a molecular phylogenetic study of the family, confirmed the monophyly of these subfamilies. All members of the Conostylidoideae -Anigozanthos Labill (11 spp.), Blancoa Lindl. (1 sp.), Conostylis R.Br. (~46 spp.), Macropidia J. Drumm. ex Harv. (1 sp.), Phlebocarya R.Br. (3 spp.) and Tribonanthes Endl. (5 spp.) - are endemic to the south-western region of Western Australia. The Hopper et al. (1999) study and a more detailed molecular phylogenetic analysis of subfamily Conostylidoideae (Hopper et al. 2006) supported Tribonanthes Endl. as basal and sister to the rest of the subfamily, which consists of two major clades: one with Blancoa and Conostylis as sister taxa and these sister to Phlebocarva, and the other with Macropidia as sister to Anigozanthos. Hopper et al. (2006) suggested Conostylis

shows a 'prolonged persistence of relictual taxa, combined with explosive more recent speciation'.

Pollen morphology and ultrastructure of the Haemodoraceae has been studied by Erdtman (1966) and Simpson (1983, 1990). All members of subfamily Haemodoroideae have monosulcate pollen, in contrast to all members of subfamily Conostylidoideae, which have 2-7-porate pollen (Simpson 1983). Additional pollen grain diversity has been noted within the subfamily Conostylidoideae. Anigozanthos, Blancoa, Conostylis and Macropidia have mostly cylindrical or fusiform grains (although Conostylis spp. may be somewhat polyhedral) with protruding hemispheric aperture walls devoid of exine. Phlebocarva has cylindrical grains with flattened apertures with scattered exinous elements. Tribonanthes has spherical grains with 5-7 flattened apertures, also with scattered exinous elements (Simpson 1983). The sample size of these previous palynological studies was limited to a small fraction of the taxon diversity in the family. In particular, Conostylis was previously known to exhibit heteromorphism in pollen aperture number, having two, three or four apertures; however, only a few species of Conostylis were investigated palynologically (Simpson 1983, 1990).

Pollen heteromorphism is often expressed as a variation in aperture number, which has been considered analogous to some animals that produce two types of sperm (Till-Bottraud *et al.* 2005). This variation in the aperture number, 'the production by a single plant of different fertile pollen types in all of its anthers and thus all flowers, throughout its life cycle,' is termed *heteromorphism*, in contrast to pollen aperture number variation among individuals within a population, termed *polymorphism* (Till-Bottraud *et al.* 1995). Pollen heteromorphism is common in angiosperms, having been explored mostly in eudicots by, among others, Ressayre *et al.* (2002), Till-Bottraud *et al.* (1995), Dajoz *et al.* (1991, 1993, 1995), Mignot *et al.* (1994), Nadot *et al.* (2000) and Pire and Dematteis (2007).

Monocotyledons have received less attention in studies of pollen aperture heteromorphism owing to reports of their pollen being monoaperturate or monoaperturate-derived (Erdtman 1966; Walker and Doyle 1975; Till-Bottraud *et al.* 1995; Ressayre *et al.* 2005). However, monocots have been explored with success for mechanisms of callose deposition during cytokinesis in the separation of the microspores and formation of the apertures (Ressayre 2001; Ressayre *et al.* 2005).

The present study was undertaken to further explore the pollen aperture type of *Conostylis*, the largest and most diverse genus of the Haemodoraceae, and its relatives in subfamily Conostylidoideae. *Conostylis* is a perennial, rhizomatous herb that has actinomorphic flowers (trichomes characteristically present on adaxial tepal surfaces) with six stamens; however, it has no recognised, morphological autopomorphy (Hopper *et al.* 2006; Simpson 1990). *Conostylis* is endemic to the south-western Kwongan region of Western Australia (Hopper and Gioia 2004). The genus has been extensively treated by Green (1960), Geerinck (1969), Hopper (1977, 1978, 1979, 1980, 1982, 2004) and Hopper *et al.* (1987, 2006). Up to 46 species have been recognised and some additional ones are awaiting description (Hopper *et al.* 2006).

Materials and methods

Pollen samples for the present study came from dried material removed from herbarium sheets at K, PERTH, RSA-POM and SDSU herbaria, obtained during 2006-2007, and in a few cases from alcohol- or formalin-acetic acid-ethanol (FAA)-fixed material. The availability of specimens of different species was extremely variable and sometimes scant, as was the presence of pollen. For the present study, we examined a total of 180 Conostylidoideae specimens, of which we consider here only 131 specimens of Conostylis and 22 specimens of other Conostylidoideae. We ascertained the validity of the identifications of these specimens as much as possible by checking annotations that reflect recent taxonomic revisions, and we used more than one specimen of each species, when available. By surveying a large number of specimens, we examined most species of Conostylis, although a few were still unobtainable or could not be included (see below). We also incorporated several species we collected at random from around the region at Eneabba, Western Australia, in August-September 2007, specifically for the present study. Pollen was abundant for the most part in these specimens, which were identified for us at the Western Australian Herbarium (PERTH) (see Appendix 1).

We extracted pollen grains from mature anthers of 42 of the ~46 species of *Conostylis* and up to 22 additional *Conostylis* subspecies. Among other members of the Conostylidoideae, we sampled 7 of the 11 species for a total of nine taxa (including subspecies) of *Anigozanthos*, two species of *Phlebocarya*, three of the five species of *Tribonanthes*, and the monotypic *Blancoa canescens* and *Macropidia fuliginosa*. Dried pollen was rehydrated in 70% ethanol and then placed on slides and stained with saturated basic Fuschin solution in 50% glycerol in order to highlight the exine layer to the exclusion of the apertures.

In most cases, we used only one or two anthers from a flower; however, if available, all the anthers of a flower or of several flowers were combined in order to obtain at least 150-200 pollen grains in a slide. No effort was made to limit the samples to one anther or one flower, as we found pollen ratios to be rather stable for each species whether one or more flowers were used. Even if in herbarium specimens there were vast differences in terms of the amount of pollen present (owing to the stage of dehiscence of the anthers, date of collection or state of the specimen itself), on the basis of specimens with a large amount of pollen we found that these factors were not relevant. Pollen heteromorphism ratios were extremely stable across species and subspecies and were constant enough to be evident even in small samples, as long as pollen was present. The emphasis was to sample as much as possible of the genus Conostylis in order to ascertain specific trends suggested in preliminary observations. In most cases, we studied more than one sample of a taxon in order to account for potential variability of different populations of the same species or of different plants of the same species. We rejected specimens only when we found none or very little pollen, when the apertures could not be clearly discerned, or if we saw inadequate voucher identification. We personally collected additional species from the field, in order to validate the ratios and pollen types, with good support. (See Appendix 1 for the documentation and raw-data counts for every individual specimen included.) Slides are housed at the herbarium at SDSU.

For each species and subspecies available, we studied pollen samples under light microscopy, and we recorded pollen aperture type and percentages of each type of heteromorphic pollen. When tabulating pollen data, if pollen was very abundant, we used the first-hundred count, followed by two or more counts of one hundred in different and non-overlapping random part of the slides in order to confirm the presence and proportion of the different pollen types. When pollen was less abundant we counted and tabulated every grain in each slide. In the case of highly heteromorphic species it was necessary to employ high magnification and observation at different focal levels, as pollen apertures were not always readily evident. Slides were recounted three times or more until we had at least three counts that were congruent.

We present the results as average percentages, which may represent one, two or as many as five available specimens of any particular species or subspecies. We cannot statistically validate our data as we were not able to comprehensively sample the taxa. Rather, we looked at every specimen available in relevant herbaria that housed *Conostylis* taxa. In some cases, we had only one specimen per taxon; however, on the basis of the stability of pollen type and ratios in those species from which we had many subspecies, or abundant specimens, or where we found abundant pollen, we decided even single specimens were worth including, if only to document pollen type and to approximate heteromorphism ratio, which was the main focus of the present study.

Till-Bottraud *et al.* (1995), in a study of pollen heteromorphism in which ratios were not quantified, designated a plant's pollen as heteromorphic only when the most dominant type represented 90% or less; if other types were present but represented less than 10%, then the pollen was considered 'cryptoheteromorphic'. We found this concept useful and adopted it in our analysis.

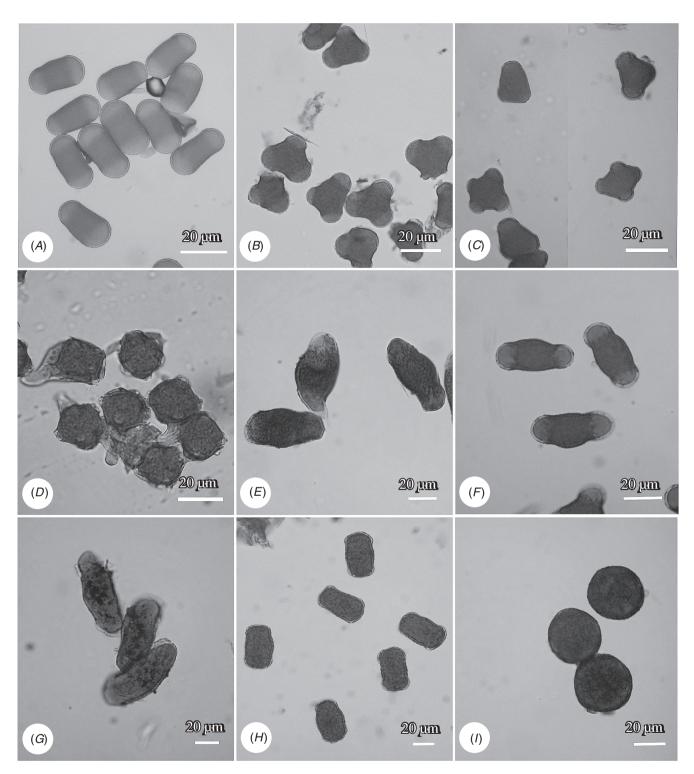
Results

The results of the present study showed that the pollen in Conostylis may be biporate (Figs 1A, 2A), triporate (Figs 1B, 2B, D), tetraporate (Figs 1C, 2C) or polyporate, defined here as having five or more apertures. (Figs 1D, 2E, F). Pollen aperture number in the rest of subfamily Conostylidoideae is less diverse, with most genera being biporate or showing limited degree of triporate pollen (Table 1, Appendix 1). Pollen of Anigozanthos (Fig. 1E), Blancoa (Fig. 1F) and Macropidia (Fig. 1G) are largely biporate, with the grains being on the whole larger than those of Conostylis (Fig. 1A-D). Some species of Anigozanthos were found to be cryptoheteromorphically triporate, and some have a fusiform appearance, whereas the triaperturate ratio in Blancoa canescens (Fig. 1F) is ~20% (Table 1). M. fuliginosa is largely biporate with very limited triporate pollen present, its pollen grains larger than those of Conostvlis, lengthwise 70 µm on average (Fig. 1G, Table 1). Pollen of *Phlebocarva* is uniformly biporate (Fig. 1H), the grains being somewhat shorter and stouter than the biporate grains of Conostvlis, whereas pollen of Tribonanthes is globose and pantoaperturate (Fig. 11).

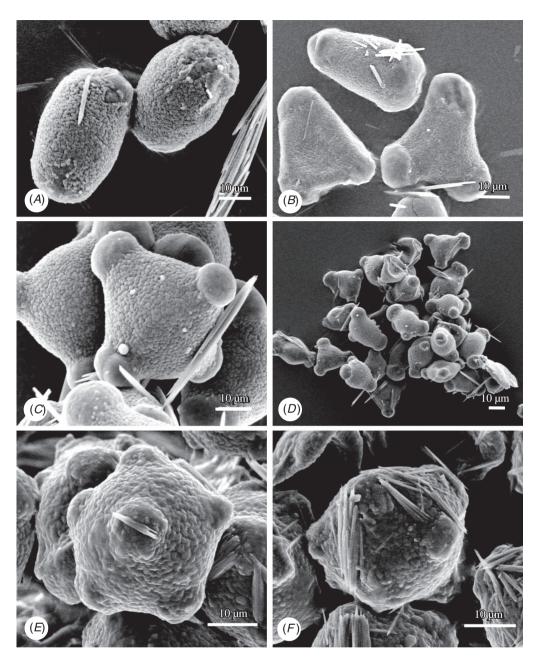
In Conostylis, six species are invariant in aperture number, all being 100% biporate. Four of these, C. angustifolia Hopper, C. hiemalis Hopper, C. seminuda Hopper and C. tomentosa Hopper, are close relatives in the clade corresponding to section Appendicula (Fig. 5, cladogram after Hopper et al. 2006; see below); a fifth species, C. juncea Endl., is closely related in an adjacent clade, and a sixth, C. robusta Hopper, had not been studied phylogenetically at this time. The other 58 species and subspecies we examined are all heteromorphic to varying degrees (Fig. 3). Triaperturate pollen grains are present in the majority of species of Conostylis, with proportions varying from a cryptoheteromorphic condition (<10%) in some taxa (10 subsp. of C. aculeata, 5 subsp. of C. candicans, 2 subsp. of C. pauciflora, and four other species) to that of common to very common in other taxa, to almost totally triporate pollen (~90%) in C. canteriata Hopper, C. bealiana F.Muell. and C. neocymosa Hopper (Fig. 3). Tetraporate pollen grains are found for the most part in less abundant proportions than triporate ones, up to 20% in two taxa, C. androstemma F.Muell. and C. drummondii Benth.; the two subspecies of C. caricina Lindl., the two of C. crassinervia J.W.Green, and C. setosa Lindl. reach or exceed 10%. A very small percentage of pentaporate pollen was found in a few taxa (Fig. 3). C. phathyrantha Diels was unique in being more than 90% polyporate (Figs 1D, 2E, F).

Pollen aperture type was found to be characteristic of and consistent within the specimens of each species and also within subspecies, as was the ratio of aperture types. For example, nine *Conostylis* species, each of which has at least two or more subspecies, *C. aculeata* R.Br., *C. candicans* Endl., *C. caricina* Lindl., *C. crassinervia* J.W.Green, *C. dielsii* W.Fitzg., *C. pauciflora* Hopper, *C. seorsiflora* F.Muell., *C. setigera* R.Br. and *C. teretifolia* J.W.Green, show little variation within specimens and species in the average percentage of biporate pollen grains among samples examined (Fig. 4). The same is true of examined species with regard to percentage of triporate pollen (not illustrated).

Although many specimens used in the present study had limited pollen, there were only three discrepancies in samples among the 180 examined. One specimen of *C. crassinervia* (PERTH 541343) was highly biporate, whereas all other specimens, including all subspecies of *C. crassinervia*, were highly triporate. The odd specimen was discarded, as its identity had not been annotated subsequent to its initial collection. For *C. serrulata*, the two specimens we examined were very different, one biporate (PERTH 4916867) and the other triporate (K PG Wilson). We elected not to consider either of them, as their validity could not be further ascertained (Table 1, Appendix 1).


Pollen aperture data showed agreement with known phylogenetic relationships derived from molecular data. In their phylogenetic analysis of generic and subgeneric relationships in Conostylis, Hopper et al. (2006) established two sister clades, A and B, and these two clades are also clearly differentiated by their pollen aperture type (Fig. 5). Clade A is biporate or cryptically triporate (or in one species up to 14% triporate), whereas Clade B shows a great degree of pollen heteromorphism and a high proportion of triporate pollen, with biporate ratios of 2-79% and triporate ratios of 20-90%, and many species showing tetraporate and pentaporate pollen as well. Also consistent with the results of Hopper et al. (2006) is that the pollen aperture number of members of section Appendicula (Fig. 5) is consistent with the biporate or cryptically triporate aperture type of Clade A and not with the highly heteromorphic subgenus Pendula (in Clade B), where section Appendicula had been previously placed.

Tetraporate grains are present only in species with a large percentage of triporate pollen, but often with biporate pollen still present (Fig. 3). Very few taxa had tetraporate pollen beyond a mere 5%, and the maximum found was 20%. We also observed that in most species with small percentages of tetraporate pollen, the tetraporate grains are mostly irregular with only one, two or occasionally three pores in the same plane (Fig. 6D, E), whereas in species where tetraporate grains are more abundant, such as *C. canteriata* (See Fig. 6F) or *C. teretifolia* (Fig. 6G), the tetraporate grains are still quite variable in shape, although the pores appear mostly in the same plane.


Even with the stability in pollen aperture ratios across species and species groupings, the average counts presented here are mostly approximate, particularly in highly heteromorphic species (Appendix 1). In many cases, we had only one or two herbarium specimens, which commonly have limited pollen. However, pollen data from the newly collected species consistently matched the taxon-specific pollen aperture types and ratios obtained from herbarium specimens.

Anthers of most species of *Conostylis* measure between 1 and 3 mm in length and the length of most pollen grains is within 30 and 50 μ m. Individual refocusing and higher magnification for every grain were necessary in highly heteromorphic species, as many pores were not readily evident (Fig. 6*A*–*D*, *E*). We used Helicon Focus software (http://www.heliconsoft.com, verified January 2009) to produce some composite images of pollen grains at different focal lengths (Fig. 6*C*).

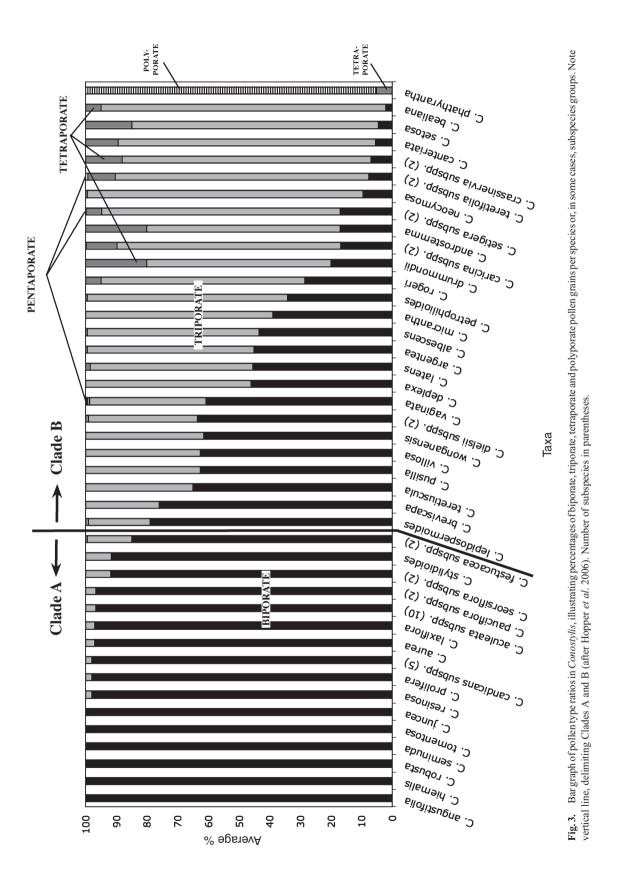
Worth noting is the specimen of *C. caricina* (PERTH 5449723). A rare type of pollen grain was found frequently in this specimen, one somewhat elongated, of a shape not seen

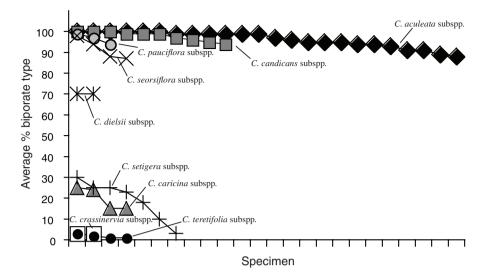
Fig. 1. Pollen grains of subfamily Conostylidoideae (by light microscopy). Pollen aperture in *Conostylis*, average lengthwise size of grain 25–35 μm. (*A*) *C. angustifolia* (SDSU 16999) a 100% biporate species. (*B*) *C. setigera* ssp. *setigera* (PERTH 228555), a highly triporate species. (*C*) *C. setigera* (PERTH 5320011), tetraporate grains. (*D*) *C. phathyrantha* (PERTH 5745748), a polyporate species. (*E*) *Anigozanthos humilis* (PERTH 5280079), lengthwise pollen grain size range 55–61 μm. (*F*) *Blancoa canescens* (PERTH 6490875), lengthwise size range 45–50 μm. (*G*) *Macropidia fuliginosa* (PERTH 2086166), lengthwise size range 60–80 μm. (*H*) *Phlebocarya ciliata* (SDSU 17022), lengthwise size range 39–42 μm. (*I*) *Tribonanthes longipetala* (PERTH 7296029), size range in diameter 42–60 μm.

Fig. 2. Pollen grains of *Conostylis* (by scanning electron microscopy). (*A*) *C. breviscapa* (PERTH 2052385), with biporate grains. (*B*) *C. vaginata* (PERTH 5645638), with biporate and triporate grains. (*C*, *D*) *C. androstemma* (PERTH 2011026), with triporate and tetraporate grains. (*E*, *F*) *C. phathyrantha* (PERTH 05745748), showing hexaporate/polyporate grains.

before, with four small apertures in the same plane and an enlargement at one end (Fig. 6H). This type was present at a ratio of 2% of the total count. The enlargement does not appear to represent a pollen tube, as many pollen grains with pollen tubes were also present (Fig. 6I). In addition, the specimen showed a high percentage of tetraporate pollen in many different shapes that were not found in other species or specimens. It is possible that these are transitional to the rarer, elongated type.

Discussion


Pollen aperture number, as a discrete character easy to measure, has been considered often, 'because an evolutionary increase in aperture number in angiosperms since the Mesozoic indicates possible relationship with pollen fitness' (Till-Bottraud *et al.* 1995). Furness and Rudall (2004) considered that the improved chances of contact with the stigmatic surface through an increase in the number of apertures, coupled with the aperture movement


Table 1. Subfamily Conostylidoideae

Average aperture-type ratios, arranged within each genus by decreasing biporate percentage. Numbers in parentheses represent number of specimens included

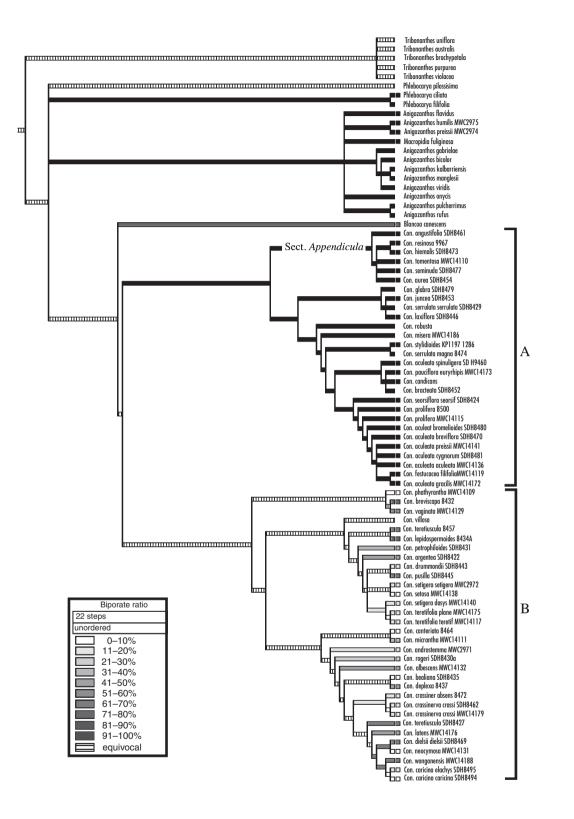
Taxon	Biporate	Triporate	Tetraporate	Polyporate
Anigozanthos humilis Lindl. and its subspp. (2)	100	0	0	0
A. rufus Labill. (2)	100	0	0	0
A. bicolor Endl. ssp. bicolor (1)	99	1	0	0
A. oncys A.S.George (1)	99	1	0	0
A. viridis Endl. and its subspp. (4)	99	1	0	0
A. flavidus D.C. (1)	98	2	0	0
Blancoa canescens Lindl. (3)	76	24	0	0
Conostylis angustifolia Hopper (2)	100	0	0	0
C. hiemalis Hopper (2)	100	0	0	0
C. robusta Diels. (1)	100	0	0	0
C. seminuda Hopper (1)	100	0	0	0
C. tomentosa Hopper (2)	100	0	0	0
C. juncea Endl. (2)	100	0	0	0
C. resinosa Hopper (3)	98	2	0	0
C. prolifera Benth. (2)	98	2	0	0
C. candicans Endl. and its subspp. (10)	97.9	2.1	0	0
<i>C. aurea</i> Lindl. (2)	97	3	0	0
C. laxiflora Benth. (1)	97	3	0	0
C. aculeata R.Br. and its subspp. (23)	96.7	3.3	0	0
C. pauciflora Hopper and its subspp. (3)	96.6	3.3	0	0
C. seorsiflora F.Muell. and its subspp. (4)	91.75	8.25	0	0
C. stylidoides F.Muell. (3)	91.7	8.3	0	0
C. festucacea Endl. and its subspp. (3)	85	14.5	0.5	0
C. lepidospermoides Hopper (1)	79	20	1	0
C. breviscapa R.Br. (2)	76	24	0	0
C. teretiuscula F.Muell. (2)	65	35	0	0
C. pusilla Endl. (2)	62.5	37.5	0	0
C. villosa Benth. (2)	62.5	37.5	0	0
C. wonganensis Hopper (2)	61.5	38.5	0	0
C. dielsii W.Fitzg. and its subspp. (4)	61.3	34.3	1	0
C. vaginata Endl. (4)	60.8	38	0.8	0.4
C. deplexa Green (1)	46	54	0	0
C. latens Hopper (2)	45.5	53	1.5	0
C. argentea (J.W.Green) Hopper (2)	45	54.5	0.5	0
C. albescens Hopper (2)	42	54.5	0.5	0
C. micrantha Hopper (2)	39	61	0	0
C. petrophilodes Benth. (2)	34	65.5	0.5	0
C. rogeri Hopper (2)	28.5	66.5	5	0
C. drummondii Benth. (1)	20	60	20	0
C. caricina Lindl. and its subspp. (4)	16.8	73	10	0
C. androstemma F.Muell. (1)	17	63	20	0
C. setigera R.Br. and its subspp. (8)	17	77.8	5.1	0.1
C. neocymosa Hopper (2)	9.5	90	0.5	0
C. teretifolia J.W.Green and its subspp. (6)	7.7	82.7	9	0.6
C. crassinervia J.W.Green and its subspp. (5)	6.8	81.2	12	0
C. canteriata Hopper (3)	5.3	84	10.7	0
C. setosa Lindl. (2)	4.5	80.5	15	0
C. bealiana F.Muell. (2)	2	93	5	0
C. phathyrantha Diels. (2)	0	0	5	95
Macropidia fuliginosa (Hook.) Druce (2)	100	0	0	0
Phlebocarya R.Br. and its subspp. (2)	100	0	0	0
Tribonanthes Endl. and its subspp. (4)	0	0	0	100

from a polar to an equatorial plane, might have been a key innovation in the diversification of eudicots, which have been defined in terms of the aperture character itself. These changes are known to have happened at the base of the angiosperm clade, with an evolutionary trend towards an increase in the number of apertures, mostly from one to three (Furness and Rudall 2004). Most taxa have pollen grains with only one or a few apertures, but they 'usually occupy highly stable positions on their surface, with pluriaperturate pollen grains being the derived condition' (Walker and Doyle 1975; and others, cited

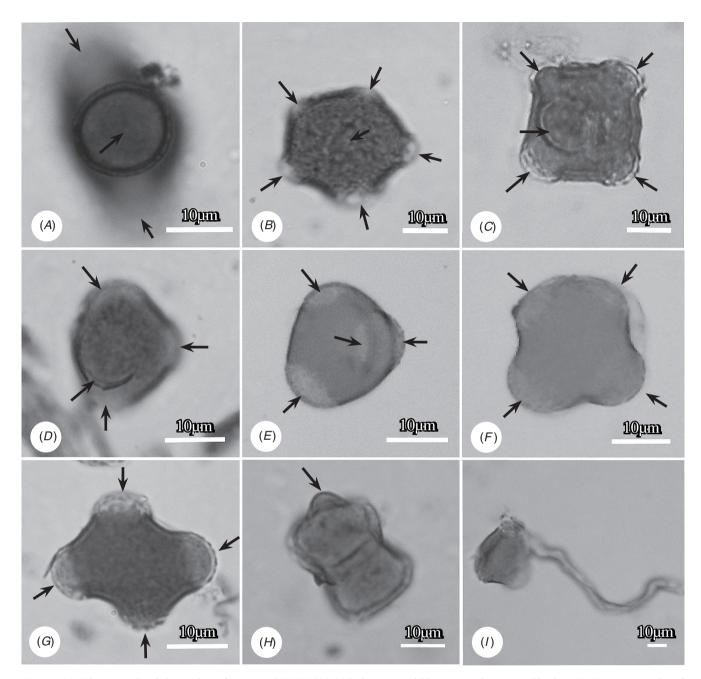
Fig. 4. Average percentages of biporate pollen as a function of the different specimens of *Conostylis*. Considered here are specimens of only those species with one or more subspecies, with number of subspecies indicated below in parentheses. The *x*-axis sometimes represents more than one specimen of the same species or subspecies. Most *Conostylis* species have some proportion of biporate pollen, from 3 to 100%, but these ratios are rather constant within sister subspecies as are the triporate and tetraporate ratios within species/ subspecies across the genus (*C. aculeata* subspp. 11; *C. candicans* subspp. 5; *C. caricina* subspp. 2; *C. crassinervia* subspp. 2; *C. dielsii* subspp. 2; *C. pauciflora* subspp. 2; *C. seorsiflora* subspp. 2; *C. setigera* subspp. 2; *C. teretifolia* subspp. 2).

in Dajoz *et al.* 1991). In some lineages of eudicots, aperture number has increased and decreased many times independently (Edlund *et al.* 2004).

Monocots, for their part, have not been widely studied for pollen heteromorphism because their pollen has been widely documented as monoaperturate, and this condition is considered ancestral to eudicots. However, as many as 10 monocot families are known to have triaperturate pollen (e.g. Harley and Dransfield 2003), as documented in an exhaustive review by Harley (2004). Our results with Conostylis seem to indicate that an increase in aperture number in pollen grains might be more common than expected in monocots, a view held for all other plant families by Till-Bottraud et al. (2005), and that the function of this increase could be the same in all angiosperms. Pollenaperture variation among closely related species and even within species has been well documented. Ressayre et al. (1998) and Till-Bottraud et al. (1995) estimated at 30% the number of eudicot species producing several types of pollen grains, differing by aperture number within a plant or showing variation in some populations or species.


In comparisons between four- and three-aperturate pollen grains in *Viola diversifolia* (Dajoz *et al.* 1991, 1993), triaperturate pollen grains were found to live longer, with faster tube growth and increased effectiveness in the long term, whereas four-porate grains were found to mature earlier and have faster germination rates. It has been postulated that a pluriaperturate, more rapidly germinating grain would be more effective at immediate pollination and be favoured at times when pollinators are abundant. The longer lasting pollen grains with fewer apertures could be favoured for their persistence when pollination services are scarcer (Till-Bottraud *et al.* 2001). It is not known whether different-aperturate pollen functions in the same way in *Conostylis*.

Other authors have found some effect of pollen grain volume on length of the pollen tube and on survival rate (Williams and Rouse 1990; Dajoz *et al.* 1993) or have suggested that different pollen types may be favoured in different ecological conditions. Mignot *et al.* (1994) found pollen heteromorphism was characteristic of the species and could be genetically expressed. In *Conostylis*, the aperture ratio is also species-specific, indicating genetic control, and ratios did not vary noticeably from one population to another.


Many studies have explored genetic or ontogenic influences on aperture number and their relationship with several factors such as polyploidy (Till-Bottraud *et al.* 1995), increase in pollen size or gametophytic ploidy (Dajoz *et al.* 1993), zygomorphy, enantiostyly or pollination strategy (Till-Bottraud *et al.* 2005). Several studies have shown inconclusive results or have attributed heteromorphy of pollen grains to both environmental and genetic factors (Till-Bottraud *et al.* 1995).

A difference in ploidy level of the sporophyte, which is known to influence pollen morphology (many authors, discussed in Till-Bottraud *et al.* 1995), has been associated with increased aperture numbers in pollen grains. However, e.g. Dajoz *et al.* (1995), Mignot *et al.* (1994) evaluated this in studies of the fossil record and proposed that the increase in the aperture number has evolved through selection.

On the basis of the available data, there appears to be no clear correlation between pollen aperture number and chromosome number in *Conostylis*. Two species, *C. setigera* (2n = 14,21,28) and *C. teretifolia* (2n = 7,14), have a tendency for a polyploid origin and do have greater percentages of higher-aperturate pollen

Fig. 5. Cladogram of subfamily *Conostylidoideae* (after Hopper *et al.* 2006), with shading reflecting relative percentage of biporate pollen. In *Conostylis*, the presence or absence of pollen heteromorphism and percentage of pollen type are strongly correlated with subgroupings in the genus. Most species in Clade A (from Hopper *et al.* 2006) are biporate to cryptically triporate (90–100% biporate), except for *C. festucacea* Endl., which is 85% biporate (15% triporate). Clade B shows a much greater degree of aperture heteromorphism, with biporate ratios ranging from 2 to 79%, triporate pollen ratios 20–93% and tetraporate ratios up to 20%.

Fig. 6. (*A*) Triporate grain of *Conostylis androstemma* (PERTH 2011026) that appeared biporate at a lower magnification. (*B*) Hexaporate grains of *C. phathyrantha* (PERTH 5745748), with the central sixth aperture out of focus (centre, arrow). (*C*) Pentaporate grain in *C. phathyrantha* (PERTH 5745748); Helicon Focus composite image of several taken at various focus lengths. (*D*–*G*) Examples of tetraporate grains. (*D*) *C. caricina* (PERTH 449723). (*E*, *F*) *C. canteriata* (SDSU 19039). (*G*) *C. teretifolia* subsp. *teretifolia* (PERTH 05477263). (*H*) A rare pollen type with four small apertures and an enlargement at one end (where arrow is pointing), present at a ratio of 2% in *C. caricina* (PERTH 5449723). (*I*) Triporate grain with pollen tube, in the same specimen as (*H*). Arrows point to apertures, throughout. All images were taken under a light microscope.

types (Appendix 1). However, other species show no such trend. For example, *C. stylidioides* (2n = 16) has been proposed as being of polyploid origin (Krauss and Hopper 2001) but has a largely biporate condition. Conversely, *C. phathyrantha*, which has a high pollen aperture number, is not of polyploid origin, with 2n = 8 as in most *Conostylis* species. Apertures in pollen grains have been seen to form relative to the last points of contact of microspores in the formed tetrad before the deposition of callose during cytokinesis, and it is the widespread view that the flexibility in aperture number is related to simultaneous microsporogenesis (Furness and Rudall 2004). Harley (2004) surveyed many studies of monocot genera and noted the type of pollen, cytokinesis type and other related characters, and found that monocots largely had successive microsporogenesis, in which paired microspores would be already isolated from the other two after Meiosis I and so less likely to have an increased number of apertures. Furness and Rudall (1999) consider that there is little relation between microsporogenesis type and aperture number in monocots. Documenting the large number of apertures in *Conostylis* could shed new light on this issue.

The other genera in the rest of subfamily Conostylidoideae – Anigozanthos, Blancoa, Macropidia, Phlebocarya and Tribonanthes – are much less speciose than Conostylis. We found less pollen diversity and very reduced heteromorphism in pollen grain apertures of these taxa, most being biporate, a few cryptoheteromorphically triporate, and in the case of Blancoa canescens (sister to Conostylis), 20% triporate. The basal member of the Conostylidoideae, the genus Tribonanthes, is unique in having globose, pantoaperturate pollen.

Conclusions

The pollen of the monocot genus *Conostylis* was found to vary greatly in the number of apertures, with biporate, triporate, tetraporate and polyporate (pentaporate and hexaporate) pollen present. Aperturate pollen types and ratios were found to be stable, taxon specific, and consistent within species and subspecies groupings. This heteromorphism in pollen aperture number in *Conostylis*, a condition considered rare in monocots, is correlated well with recently established phylogenetic relationships.

Acknowledgements

We thank the herbaria of Kew Gardens (K), Western Australia (PERTH), Rancho Santa Ana Botanical Garden (RSA-POM) and San Diego State University (SDSU) for their assistance and for kindly allowing us to remove pollen samples from their specimens. We thank the department of Conservation and Land management (CALM) in Western Australia, for the collection permits to complete this study on Western Australian Flora and the Western Australian Herbarium (PERTH) for their invaluable assistance as well as their help in specimen identification. Our gratitude also goes to our anonymous reviewers who greatly helped improve our paper.

References

- Cooke RG, Edwards JM (1981) Naturally occurring phenalenones and related compounds. Fortschritte der Chemie Organischer Naturstoffe 40, 158–190.
- Cooke RG, Segal W (1955) Colouring matters of Australian plants IV. Haemocorin: a unique glycoside from *Haemodorum corymbosum* Vahl. Australian Journal of Chemistry 8, 107–113.
- Cooke RG, Johnson BL, Segal W (1958) Colouring matters of Australian plants VI. Haemocorin: the structure of the aglycone. *Australian Journal* of Chemistry 11, 230–235.
- Dajoz I, Till-Bottraud I, Gouyon PH (1991) Evolution of pollen morphology. *Science* **253**, 66–68. doi: 10.1126/science.253.5015.66
- Dajoz I, Till-Bottraud I, Gouyon PH (1993) Pollen aperture and gametophyte performance in *Viola diversifolia*. *Evolution* 47, 1080–1083. doi: 10.2307/2409976
- Dajoz I, Mignot A, Hoss C, Till-Bottraud I (1995) Pollen aperture heteromorphism is not due to unreduced gametophytes. *American Journal of Botany* 82, 104–122. doi: 10.2307/2445792

- Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. *The Plant Cell* **16**, S84–S97. doi: 10.1105/tpc.015800
- Erdtman G (1966) 'Pollen morphology and plant taxonomy. Angiosperms.' Corrected reprint and new addendum. (Hafner Publications: New York)
- Furness CA, Rudall PJ (1999) Microsporogenesis in the Monocotyledons. Annals of Botany 84, 475–499. doi: 10.1006/anbo.1999.0942
- Furness CA, Rudall P (2004) Pollen aperture evolution—a crucial factor for eudicot success? *Trends in Plant Science* 9, 154–158. doi: 10.1016/j.tplants.2004.01.001
- Geerinck D (1969) Le genre Conostylis R.Br. (Haemodraceae d'Australie). Bulletin du Jardin Botanique National de Belgique 39, 167–177. doi: 10.2307/3667696
- Green JW (1960) The genus Conostylis R.Br. II. Taxonomy. Proceedings of the Linnean Society of New South Wales 85, 334–373.
- Harley MM (2004) Triaperturate pollen in the Monocotyledons: configurations and conjectures. *Plant Systematics and Evolution* 247, 75–122. doi: 10.1007/s00606-003-0107-x
- Harley MM, Dransfield J (2003) Triporate pollen in the Arecaceae. *Grana* 42, 3–19. doi: 10.1080/00173130310008535
- Hopper SD (1977) Variation and natural hybridization in the *Conostylis aculeata* R.Br. species group near Dawesville, WA. *Australian Journal of Botany* 25, 395–411. doi: 10.1071/BT9770395
- Hopper SD (1978) Nomenclatural notes and new taxa in the Conostylis aculeata group (Haemodoraceae). Nuytsia 2, 254–264.
- Hopper SD (1979) Biogeographical aspects of speciation in the southwest Australian flora. *Annual Review of Ecology and Systematics* 10, 399–422. doi: 10.1146/annurev.es.10.110179.002151
- Hopper SD (1980) Conostylis neocymosa sp. nov. (Haemodoraceae) from southwestern Australia. Botaniska Notiser 133, 223–226.
- Hopper SD (1982) A new species of *Conostylis* (Haemodoraceae) from the Wongan Hills district. *Nuytsia* 4, 17–21.
- Hopper SD (2004) South-western Australia—Cinderella of the world's temperate floristic regions. *Curtis's Botanical Magazine* 21, 132–180. doi: 10.1111/j.1355-4905.2004.00430.x
- Hopper SD, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hotspot of biodiversity. *Annual Review of Ecology Evolution and Systematics* 35, 623–650. doi: 10.1146/annurev.ecolsys.35.112202.130201
- Hopper SD, Purdie RW, George AS, Patrick SJ (1987) Conostylis. In 'Flora of Australia. Vol. 45, Hydatellaceae to Liliaceae'. (Ed. A Wilson) pp. 57–110. (AGPS/CSIRO: Canberra)
- Hopper SD, Fay MF, Rossetto M, Chase MW (1999) A molecular phylogenetic analysis of the bloodroot and kangaroo paw family, Haemodoraceae: taxonomic, biogeographic and conservation implications. *Botanical Journal of the Linnean Society* **131**, 285–299.
- Hopper SD, Chase MD, Fay MF (2006) A molecular phylogenetic study of generic and subgeneric relationships in the Southwestern Australian endemics *Conostylis* and *Blancoa* (Haemodoraceae). *Aliso* 22, 527–538.
- Krauss SL, Hopper SD (2001) From Dampier to DNA: the 300-year-old mystery of the identity and proposed allopolyploid origin of *Conostylis stylidioides* (Haemodoraceae). *Australian Journal of Botany* **49**, 611–618. doi: 10.1071/BT00072
- McFarlane T, Hopper SD, Purdue RW, George AS, Patrick SJ (1987) Haemodoraceae. In 'Flora of Australia. Vol. 45, Hydatellaceae to Liliaceae'. (Ed. A Wilson) pp. 55–148. (AGPS/CSIRO: Canberra)
- Mignot A, Hoss C, Dajoz I, Leuret C, Henry JP, Dreuillaux JM, Heberle-Bors E, Till-Bottraud I (1994) Pollen aperture polymorphism: importance, possible causes and consequences. *Acta Botanica Gallica* 141, 109–122.
- Nadot S, Ballard HE Jr, Creach JB, Dajoz I (2000) The evolution of pollen heteromorphism in *Viola*: a phylogenetic approach. *Plant Systematics and Evolution* 223, 155–171. doi: 10.1007/BF00985276

- Opitz S, Schneider B (2002) Organ-specific analysis of phenylphenalenonerelated compounds in *Xiphidium caeruleum*. *Phytochemistry* **61**, 819–825. doi: 10.1016/S0031-9422(02)00359-X
- Opitz S, Schnitzler JP, Hause B, Schneider B (2003) Histochemical analysis of phenylphenalenone-related compounds in *Xiphidium caeruleum* (Haemodoraceae). *Planta* 216, 881–889.
- Pire SM, Dematteis M (2007) Pollen aperture heteromorphism in *Centaurium pulchellum* (Gentianaceae). *Grana* 46, 1–12. doi: 10.1080/00173130601101245
- Ressayre A (2001) Equatorial aperture pattern in monocots: same definition rules as in Eudicots? The example of two species of Pontederiaceae. *International Journal of Plant Sciences* **162**, 1219–1224. doi: 10.1086/323477
- Ressayre A, Godelle B, Mignot A, Gouyon PH (1998) A morphogenetic model accounting for pollen aperture pattern in flowering plants. *Journal* of Theoretical Biology 193, 321–334. doi: 10.1006/jtbi.1998.0704
- Ressayre A, Raquin Cl, Mignot A, Godelle B, Gouyon PH (2002) Correlated variation in microtubule distribution, callose deposition during male postmeiotic cytokinsis and pollen aperture number across *Nicotiana* species (Solanaceae). *American Journal of Botany* **89**, 393–400. doi: 10.3732/ajb.89.3.393
- Ressayre A, Dreyer L, Triki-Teurtroy S, Forchioni A, Nadot S (2005) Post-meiotic cytokinesis and pollen aperture pattern ontogeny: comparison of development in four species differing in aperture pattern. *American Journal of Botany* **92**, 576–583. doi: 10.3732/ajb.92.4.576
- Simpson MG (1983) Pollen ultrastructure of the Haemodoraceae and its taxonomic significance. Grana 22, 79–103.
- Simpson MG (1990) Phylogeny and classification of the Haemodoraceae. Annals of the Missouri Botanical Garden 77, 722–784. doi: 10.2307/2399670

- Simpson MG (1993) Septal nectary anatomy and phylogeny in the Haemodoraceae. *Systematic Botany* **18**, 593–613. doi: 10.2307/2419536
- Simpson MG (1998) Haemodoraceae. In 'Families and genera of flowering plants. Vol. IV. Flowering plants monocotyledons. Alismatanae and Commelinanae (except Gramineae)'. (Ed. K Kubitski) pp. 212–222. (Springer-Verlag: Berlin)
- Till-Bottraud I, Mignot A, Paepe de R (1995) Pollen heteromorphism in Nicotiana tabacum (Solanaceae). American Journal of Botany 82, 1040–1048. doi: 10.2307/2446234
- Till-Bottraud I, Gouyon PH, Venable DL, Godelle B (2001) The number of competitors providing pollen on a stigma strongly influences intraspecific variation in number of pollen apertures. *Evolutionary Ecology Research* 3, 231–253.
- Till-Bottraud I, Joly D, Lachaise D, Snook RR (2005) Pollen and sperm heteromorphism: convergence across kingdoms? *Evolutionary Biology* 18, 1–15. doi: 10.1111/j.1420-9101.2004.00789.x
- Walker JW, Doyle JA (1975) The bases of angiosperm phylogeny: palynology. *Annals of the Missouri Botanical Garden* 62, 664–723. doi: 10.2307/2395271
- Williams EG, Rouse JL (1990) Relationships of pollen size, pistil length, and pollen tube growth rates in *Rhododendron* and their influence on hybridization. *Sexual Plant Reproduction* 3, 7–17. doi: 10.1007/BF00189946

Manuscript received 30 August 2008, accepted 27 November 2008

Appendix 1. Conostylidoideae voucher specimen documentation and heteromorphism ratio and origin

Acc. no., Herbarium accession number; Bi, Biporate grain; Coll., collected for the present study; H, Herbarium; Polyp., polyporate grain; Sp.Orig., specimen origin; Te, tetraporate grain; Tri, triporate grain

Taxon	Acc. no.	Collector	% Bi	%Tri	%Te	% Polyp.	Sp.Orig
Anigozanthos bicolor ssp. bicolor	PERTH 6514170	BJ Keighery 2082 24/08/1994	99	1	0	0	Н
A. flavidus	SDSU 17114	MG Simpson 24IX1981J	98	2	0	0	Н
A. humilis	PERTH 5280079	JP Pigott 14/09/1992	100	0	0	0	Н
A. humilis ssp. humilis	PERTH 7417772	SA Fisher BNC 553 9/10/2005	100	0	0	0	Н
A. manglesii	SDSU 17116	K Dixon 16IX1987	98	2	0	0	Н
A. oncys	PERTH 2690950	SD Hopper 7862 2/10/1990	99	1	0	0	Н
A. rufus	PERTH 2012456	SD Hopper 819 31/10/1974	100	0	0	0	Н
A. rufus	SDSU 17111	MG Simpson 27IX1981F	100	0	0	0	Н
A. viridis	PERTH 5578531	H Cole 131 24/09/1999	99	1	0	0	Н
A. viridis ssp. cataby	PERTH 3911632	SD Hopper 748 28/10/1976	98	2	0	0	Н
A. viridis ssp. terraspectans	PERTH 993662	SD Hopper 1784 22/10/1980	98	2	0	0	Н
A. viridis ssp. viridis	PERTH 6322581	P Foreman 155 1/10/2002	100	0	0	0	Н
Blancoa canescens	PERTH 6490875	TJ Alford 223 23/06/2003	50	50	0	0	Н
B. canescens	SDSU 17039	MG Simpson 18IX1981AA	84	16	0	0	Н
B. canescens	K	Max Hook 2170 1957	94	6	0	0	Н
Conostylis aculeata	SDSU 17035	MG Simpson 239IX1981A	100	0	0	0	Н
C. aculeata	PERTH 6799132	B Muir 45 31/10/2001	100	0	0	0	Н
<i>C. aculeata</i> ssp. <i>aculeata</i>	RSA 283218	L Haefi 1848 22/8/1917	99	1	0	0	Н
C. aculeata ssp. aculeata	PERTH 4968093	R Davis 4325 20/10/1997	94	6	0	0	Н
C. aculeata ssp. aculeata	SDSU 17035	MG Simpson 23IX1981A	100	0	0	0	Н
C. aculeata ssp. breviflora	SDSU 16995	L Aerne 50 9/26/2005	100	0	0	0	Н
C. aculeata ssp. breviflora	SDSU 17034	MG Simpson 17IX1981K	99	1	0	0	Н
C. aculeata ssp. breviflora	PERTH 5477646	M Hislop 1546 13/09/1999	95	5	0	0	Н
C. aculeata ssp. breviflora	SDSU 19037	NB Pierce 274 2/9/2007	100	1	0	0	Coll.
C. aculeata ssp. bromeliodes	PERTH 5106168	BA Furher 9780 30/09/1997	89	11	0	0	Н
C. aculeata ssp. bromeliodes	SDSU 16996	L Aerne 54 9/27/2005	93	7	0	0	Н
C. aculeata ssp. cygnorum	PERTH 7028865	K Richardson 221 13/09/2003	95	5	0	0	Н
C. aculeata ssp. cygnorum	K	SD Hopper 5193	97	3	0	0	Н
C. aculeata ssp. echinissima	PERTH 1143778	SD Hopper 1314 14/09/1979	99	1	0	0	Н
<i>C. aculeata</i> ssp. <i>gracilis</i>	PERTH 7527403	D Rooks 197 26/10/2006	95	5	0	0	Н
C. aculeata ssp. gracilis	K	SD Hopper 2673	99	1	0	0	Н
C. aculeata ssp. preissii	PERTH 7483406	C Danese B11006-51 5/10/2006	94	6	0	0	Н
C. aculeata ssp. preissii	RSA 255234	L Deburh 3374	100	0	0	0	Н
C. aculeata ssp. riphidion	PERTH 6600069	J Brooker 488 27/09/2002	96	4	0	0	Н
C. aculeata ssp. septentrionora	PERTH 5516633	D Bellairs 6047 16/09/1998	91	9	0	0	Н
C. aculeata ssp. spinuligera	PERTH 2010429	SD Hopper 1796 23/10/1980	91	9	0	0	Н
C. aculeata ssp. spinuligera	SDSU 16997	L Aerne 31 9/25/2005	97	3	0	0	Н
C. aculeata ssp. spinuligera	K	HT Mueller 1873	99	1	0	0	Н
C. albescens	PERTH 1027212	SD Hopper 1248 25/08/1979	32	68	1	0	Н
C. albescens	K 1247/1139	SD Hopper 1247 16/2/1987	52	41	0	0	Н
C. androstemma	PERTH 2011026	SD Hopper 188 16/06/1975	17	63	20	4	Н
C. angustifolia	SDSU 16999	L Aerne 32 9/25/2005	100	0	0	0	Н
C. angustifolia	PERTH 7296037	S Patrick 1560 14/09/1973	100	0	0	0	Н
C. argentea	PERTH 6692257	GJ Keighery 48 14/05/1999	42	57	1	0	Н
C. argentea	K	CG Kinglsey 7330	48	52	0	0	Н
C. aurea	SDSU 17000	L Aerne 26 9/25/2005	99	1	0	0	Н
C. aurea	PERTH 5613779	JE Wajon 105 29/09/1999	95	5	0	0	Н
C. bealiana	SDSU	MG Simpson 11IX1981D	2	96	2	0	Н
C. bealiana	PERTH 6261957	B Archer 1064 28/07/1998	2	90	8	0	Н
C. breviscapa	PERTH 2052164	SD Hopper 341 9/9/1976	68	32	0	0	Н
C. breviscapa	PERTH 2052385	EM Bennett 3091 15/01/1970	84	16	0	0	Н
C. candicans	POM 325144	ES Lathrop 257	99	1	0	0	Н
C. candicans	SDSU	L Aerne 62	100	0	0	0	Н
C. candicans	PERTH 4305388	M Lewis 64/92 8/8/1992	97	3	0	0	Н
C. candicans ssp. candicans	SDSU 19041	NB Pierce 264 2/9/2007	100	0	0	0	Coll.
C. candicans ssp. candicans	PERTH 6392407	MA Langley 6/10/1999	99	1	0	0	Н
C. candicans ssp. calcicola	PERTH 6417574	J Kelly 32 10/2002	95	5	0	0	Н
C. candicans ssp. calcicola	SDSU 19040	NB Pierce 260 2/9/2007	99	1	0	0	Coll.

			Appendix 1. (continued)					
C candicans var. Lpopp/MIA ⁻ PERTH 203332 SD Hopper 16 28/10/197 00 0 0 11 C candicans var. Lpopp/MIA ⁻ PERTH 486635 R Davis 3688 107/1997 15 85 0 0 11 C canceriata SDSU 19039 NB Pierce 267 29/2007 1 77 22 0 Coll C canceriata SDSU 19038 NB Pierce 267 29/2007 0 90 10 0 0 11 C cancianta sp. calchys PERTH 349473 H Bowler 108 87/1997 15 85 10 0 14 C canciant sp. calchys SDSU 17004 L Aerne 29727015 15 85 10 14 C canciant sp. calchys SDSU 170200 F Hort 2567 68/2005 15 86 17 0 14 C crassinervia sp. absens SDSU 17035 SD Hopper 383 17/06/1975 3 75 15 0 14 C crassinervia sp. absens SDSU 17035 A SD Iopper 343 17/06/1975 4 90 0 11 C cansicteria sp. absense sp. Bis	Taxon	Acc. no.	Collector	% Bi	%Tri	%Te	% Polyp.	Sp.Orig.
C candicans var. Lpopp/MIA ⁻ PERTH 203332 SD Hopper 16 28/10/197 00 0 0 11 C candicans var. Lpopp/MIA ⁻ PERTH 486635 R Davis 3688 107/1997 15 85 0 0 11 C canceriata SDSU 19039 NB Pierce 267 29/2007 1 77 22 0 Coll C canceriata SDSU 19038 NB Pierce 267 29/2007 0 90 10 0 0 11 C cancianta sp. calchys PERTH 349473 H Bowler 108 87/1997 15 85 10 0 14 C canciant sp. calchys SDSU 17004 L Aerne 29727015 15 85 10 14 C canciant sp. calchys SDSU 170200 F Hort 2567 68/2005 15 86 17 0 14 C crassinervia sp. absens SDSU 17035 SD Hopper 383 17/06/1975 3 75 15 0 14 C crassinervia sp. absens SDSU 17035 A SD Iopper 343 17/06/1975 4 90 0 11 C cansicteria sp. absense sp. Bis	Conostylis candicans ssp. flavifolia	PERTH 5881900	S Donaldson 1449 5/9/1997	94	6	0	0	Н
$ \begin{array}{c} C \ acaderia \ begin{tabular}{lllllllllllllllllllllllllllllllllll$								
C concentrata SDSU 19039 NB Pierce 267 29/2007 1 77 22 0 Coll. C caractina PERTH 5449723 H Bowler 108 87/1997 15 76 13 0 H C caractina sip, clachys PERTH 5449723 H Bowler 108 87/1997 24 66 10 0 H C caractina sip, clachys PERTH 7129300 F Hont 2507 (68/2005 25 65 20 0 H C carastinervia POM 325147 ES Lathrop 342 10 75 12 0 H C crassinervia sip, absens DSUSU 1705 L Acms 42 9/262005 14 86 0 0 H C crassinervia sip, absens SDSU 1705 L Acms 42 9/262005 14 86 0 0 H C declasi K M Southor 14354 70 30 0 0 H C declasis K M Southor 14354 70 30 0 0 H C declasis K M Southor 14354 70 <td></td> <td>PERTH 6507700</td> <td>**</td> <td>100</td> <td>0</td> <td>0</td> <td>0</td> <td>Н</td>		PERTH 6507700	**	100	0	0	0	Н
C caracterizate SDSU 19038 NB Piace 267 29/2007 0 9 10 0 Call C caractina PERTH 4205444 SD Hopper 888 18/9/1977 15 66 10 0 H C caractina sp. carcina PERTH 2054434 SD Hopper 888 18/9/1977 15 65 20 0 H C caractina sp. elechys SDSU 17004 L Acme 927/2005 15 85 7 0 H C carastinervia POM 325146 ES Latinop 2482 10 75 15 0 H C crassinervia sp. absens PERTH 2078635 SD Hopper 411 8/71/975 3 75 12 0 H C crassinervia sp. absens SDSU 17005 L Acme 42 926/2005 14 86 0 0 H C crassinervia sp. absens SDSU 17005 L Acme 42 926/2005 44 40 0 H C delekii sp. teres SD SU 17007 L Anna 18 197/2000 44 43 3 -H C delekii sp. teres SD SU 17072 L Acmu	* *	PERTH 4866355	R Davis 3688 10/7/1997	15	85	0	0	Н
C carcina concina PERTH 5449723 H Bowler 108 87/1997 15 76 13 0 H C carcina sap, carcina PERTH 1544943 SD Hopper 888 18/91977 24 66 10 0 H C carcina sap, cachys SDSU 17004 L Aeme 9272005 15 85 7 0 H C craximersia POM 325146 ES Lathrop 342 10 7.5 15 0 H C craximersia sep, absens SDSU 17005 L Aeme 42.9262005 14 86 0 0 H C craximersia sep, cassimersia SDSU 17005 L Aeme 42.9262005 14 86 0 0 H C craximersia sep, cassimersia SDSU 17005 L Aeme 42.9262005 14 90 6 0 H C defatis K Mobumer 14554 70 30 0 0 H C defatis K Mobumer 14554 70 30 0 0 H C defatis FERTH 554215 A ham 18/972000 <t< td=""><td>C. canteriata</td><td></td><td>NB Pierce 269 2/9/2007</td><td>1</td><td>77</td><td>22</td><td>0</td><td>Coll.</td></t<>	C. canteriata		NB Pierce 269 2/9/2007	1	77	22	0	Coll.
C carcicia sp. carcicua PERTH 205443 SD Hopper S81 R8/1977 24 66 10 0 H C carcicia sp. elachys PERTH 7129300 F Hort 2507 6/82005 25 65 20 0 H C carcicina sp. elachys PERTH 7129300 F Hort 2507 6/82005 25 65 20 0 H C crassimervia POM 325147 ES Latirop 342 10 75 12 0 H C crassimervia sp. absens PERTH 2078035 SD Hopper 335 17/061975 4 90 6 0 H C crassimervia sp. absens SDSU 17005 L Acene 42.9/262005 14 86 0 0 H C dickis sp. arcs SDSU 17005 L Acene 42.9/26005 44 43 3 H C dickis sp. teres PERTH 3054408 FObbers 6102 3/11/2002 0 0 0 H C dramonadii PERTH 2053408 FObbers 6102 3/11/2002 0 60 0 0 H C dramonadii PERTH 4054507 SD Hopp	C. canteriata	SDSU 19038	NB Pierce 267 2/9/2007	0	90	10	0	Coll.
C carcicina ssp. elachys SDSU 17004 L Acm ⁶ 9272005 15 85 7 0 H C carcina ssp. elachys PERTH 7192900 F160 257 682005 25 65 20 0 H C crassinervia POM 325146 ES Latinop 28/8/1976 3 80 17 0 H C crassinervia sp. absens SDSU 17005 L Acme 42 9262005 14 86 0 0 H C crassinervia sp. absens SDSU 17005 L Acme 42 9262005 14 86 0 0 H C crassinervia sp. absens SDSU 17005 L Acme 42 9262005 14 86 0 0 H C debiti sp. teres PERTH 924906 SD hopper 432 5706175 70 30 0 0 H C debiti sp. teres K AS George 7043 30/10/1963 46 3 3 H C debiti sp. teres K SD Hopper 4425 78/1957 0 30 0 H C debiti sp. teres K SD Hopper 2600 16/9/1982 87 12 1 0 H C festaccear sp. filiofia	C. caricina	PERTH 5449723	H Bowler 108 8/7/1997	15	76	13	0	Н
C. carciana sign. elacopy PERTH 7129300 F Hort 2567 6/82005 25 6 20 0 H C. crassimervia POM 325147 ES Lathrop 28/976 3 80 17 0 H C. crassimervia ssp. absens PERTH 2078635 SD Hopper 411 8/71975 3 75 22 0 H C. crassimervia ssp. absens SDSU 1005 L. Aemer 42 9262005 14 86 0 0 H C. crassimervia ssp. absens SDSU 1005 L. Aemer 42 9262005 4 90 6 0 H C. deloisi sp. teres K Mobumbr 14354 70 30 0 0 H C. deloisi sp. teres K SD Hopper 342 5/81975 70 30 0 0 H C. festicacca ssp. fistucacca SDSU 17072 M Ginpson 91/1/2002 20 6 20 H C. festicacca ssp. fistucacca SDSU 17052 M Ginpson 13/9181H 100 0 0 0 H C. festicacca ssp. fistucacca SDSU	C. caricina ssp. caricina	PERTH 2054434	SD Hopper 888 18/9/1977	24	66	10	0	Н
C. crassinervia POM 325147 ES Latinop 28/8/1976 3 80 17 0 H C. crassinervia sp. absens PERTH 2078635 SD Hopper 4118/7/1975 3 75 22 0 H C. crassinervia sp. absens SDSU 17005 L. Arem 42 926/2005 14 86 0 0 H C. crassinervia sp. absens DSDU 17005 L. Arem 42 926/2005 14 86 0 0 H C. arcssinervia sp. absens DSDU 17005 L. Arem 42 926/2005 14 86 0 0 H C. debiti sp. trees PERTH 12374215 A Chant 18 197/2000 44 43 3 H C. debiti sp. trees K SD Hopper 442 58/1075 70 30 0 0 H C. debiti sp. trees SDSU 17052 M C Simpon 130/11980 100 0 0 0 H C. festucace sp. filipila PERTH 205526 SD Hopper 430 130/71980 100 0 0 0 H C. hienalis SDSU 17031<	C. caricina ssp. elachys	SDSU 17004	L Aerne 9/27/2005	15	85	7	0	Н
C. crassinervia sp. absens POM 325147 ES Latimo 342 10 75 15 0 H C. crassinervia sp. absens SDSU 17005 L. Areme 42.9262005 14 86 0 0 H C. crassinervia sp. absens SDSU 17005 L. Areme 42.9262005 14 86 0 0 H C. deplas K AS George 7043 30/10/1963 46 54 0 0 H C. deblai K Mobumbr 14354 70 30 0 0 H C. deblai issp. teres PERTH 15734215 A Chant 18 197/2000 44 43 3 H C. diedisi sp. teres K SD Hopper 442.5/k/1075 70 30 0 0 H C. diediai sp. teres SDSU 17052 L Acmat 25 29/20205 87 12 1 H C. featucace sp. fistiticace SDSU 17051 L Acme 29 29/2007 100 0 0 0 H C. featucace sp. fisticace SDSU 170151 M G Simpson 13/9/1981W <td< td=""><td>C. caricina ssp. elachys</td><td>PERTH 7129300</td><td>F Hort 2567 6/8/2005</td><td>25</td><td>65</td><td>20</td><td>0</td><td>Н</td></td<>	C. caricina ssp. elachys	PERTH 7129300	F Hort 2567 6/8/2005	25	65	20	0	Н
C. crassinervia ssp. absens PERTI 2078635 SD Hopper 411 8/7/075 3 75 22 0 H C. crassinervia sp. crassinervia DSU 1 7005 L. Aeme 42 926/2005 14 86 0 0 H C. crassinervia sp. crassinervia PERTH 2054906 SD Hopper 385 17061975 4 90 6 0 H C. delsii K AS George 7043 30/10/1963 46 54 0 0 H C. delsii sp. teres PERTH 5734215 A Chant 18 197/2000 44 43 3 H C. delsii sp. teres K SD Hopper 442 58/1075 70 30 0 0 H C. delsii sp. teres K A Chant 18 197/2000 44 43 3 H C. delsii sp. teres SDSU 17052 MG Simpson 9X1981H 100 0 0 0 H C. feincalis SDSU 17057 NB Fierce 273 29/2007 100 0 0 0 H C. hienalis SDSU 17031 MG Simpson 13/9/1981W	C. crassinervia	POM 325146	ES Lathrop 28/8/1976	3	80	17	0	Н
C. crassinervia ssp. classinervia PERTH 2054906 L. Aeme 42 9/26/2005 14 86 0 0 H C. crassinervia sp. crassinervia PERTH 2054906 SD Hopper 35 17/06/1795 44 90 6 0 H C. dielsii K AS George 7043 30/10/1963 46 54 0 0 H C. dielsii sp. teres PERTH 5734215 A Chant 18 197/2000 44 43 3 H C. dielsii sp. teres K SD Hopper 342 5/8/1975 70 30 0 0 H C. dielsii sp. teres K SD Hopper 442 5/8/1975 70 30 0 0 H C. dieusia SDSU 17052 MG Simpson 91X1981H 100 0 0 0 H C. festucacea ssp. filfolia PERTH 2055570 SD Hopper 1661 31/07/1980 100 0 0 0 O Coll C. hiemalis SDSU 17031 MG Simpson 13/9/1981W 100 0 0 O Coll Coll Coll Coll <td></td> <td>POM 325147</td> <td>ES Lathrop 342</td> <td>10</td> <td>75</td> <td>15</td> <td>0</td> <td>Н</td>		POM 325147	ES Lathrop 342	10	75	15	0	Н
C. crassinervia ssp. crassinervia PERTH 2054906 SD Hopper 385 17/06/1975 4 90 6 0 H C. deplexa K Mobumbr 14354 70 30 0 0 H C. dieksii K Mobumbr 14354 70 30 0 0 H C. dieksii Sp. teres PERTH 5734215 A Chan 18 19/7/2000 44 43 3 H C. dieksii sp. teres SD Hopper 442 5/8/1975 70 30 0 0 H C. dieksii sp. teres SD SD 17007 L Acme 52 9/26/2005 87 12 1 0 H C. fortucace sp. fiti/ofa SDSU 17017 L Acme 52 9/26/2005 87 12 1 0 H C. hiernalis PERTH 205520 SD Hopper 166/9/1982 83 17 0 0 0 0 H C. hiernalis PERTH 405857 P Comman 428 13/09/2004 100 0 0 0 H C. latens SDSU 17009 L Acme 29 9/26		PERTH 2078635	SD Hopper 411 8/7/1975	3	75	22	0	Н
C. deplexa K AS Groge 7043 30/10/1963 46 54 0 0 H C. dielsii sp. teres PERTH 5734215 A Chant IS 19/72000 44 43 3 H C. dielsii sp. teres K SD Hopper 442 5/8/1975 70 30 0 0 H C. dirusmondii PERTH 6238408 FO Obens 6102 3/11/2002 20 60 20 0 H C. festucacea ssp. filifolia SDSU 17052 MG Simpson 91X1981H 100 0 0 0 H C. festucacea ssp. filifolia PERTH 2055370 SD Hopper 2609 16/9/1982 83 17 0 H C. hiemalis SDSU 17031 MG Simpson 13/9/1981W 100 0 0 0 0 H C. hiemalis SDSU 17031 MG Simpson 13/9/1981W 100 0 0 0 H C. latens SDSU 1709 L Acmic 29 92/62/005 48 51 1 0 H C. latens DSU 1709 L Acmic 29 92/62/005 97 3 0 0 H C. latens DSDSU	C. crassinervia ssp. absens	SDSU 17005		14	86	0	0	Н
C. dielsii K. Mobumbr 14354 70 30 0 0 H C. dielsii ssp. teres K SD Hopper 442 58/1975 70 30 0 0 H C. dielsii ssp. teres K SD Hopper 442 58/1975 70 30 0 0 H C. dielsii ssp. teres SD Hopper 442 58/1975 70 30 0 0 H C. diedsii ssp. teres SD Hopper 442 58/1975 70 30 0 0 0 H C. festucacea ssp. filifolia SDSU 17037 L Aerne 52 9/26/2005 87 12 1 0 H C. hiemalis PERTH 205570 SD Hopper 1661 31/07/1980 100 0 0 0 H C. hiemalis SDSU 19127 NB Pierce 273 2/92007 100 0 0 0 H C. latens SDSU 17005 L Aerne 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Aerne 29 9/26/2005 48 51	*	PERTH 2054906	SD Hopper 385 17/06/1975	4	90	6	0	Н
C. dielsii ssp. teresPERTH 5734215A Chant 18 19/7/20004444433.HC. dielsii ssp. teresKSD Hopper 442 5/8/1975703000HC. drummondiiPERTH 6238408F Obbens 6102 3/11/20022060200HC. festucacea ssp. filfoliaSDSU 17052MG Simpson 91X1981H100000HC. festucacea ssp. filfoliaPERTH 2055236SD Hopper 2609 16/9/198283170HC. hiemalisSDSU 19127NB Pierce 723 2/9/2007100000C0C. hiemalisSDSU 17031MG Simpson 13/9/1981W1000000HC. junceaPERTH 6986587P F Foreman 248 13/09/2004100000HC. latensSDSU 17009L Aeme 29 9/26/2005485110HC. latensSDSU 17009L Scat 450 3-/09/200197300HC. latensPERTH 52/5100J Scott 450 3-/09/200197300HC. latensPERTH 54/14/164RM Evans 11 15/08/1998554500HC. nocc	C. deplexa		AS George 7043 30/10/1963	46				
C. dielsii sp. teres K SD Hopper 442 5/8/1975 70 30 0 0 H C. draumondii PERTH 6238408 F Obbens 6102 3/11/2002 20 60 20 0 H C. festucacea ssp. filifolia SDSU 17052 MG Simpson 9X1981H 100 0 0 H C. festucacea ssp. filifolia SDSU 17007 L. Acme 52 9/26/2005 87 12 1 0 H C. festucacea ssp. filifolia PERTH 2055570 SD Hopper 1661 31/07/1980 100 0 0 0 H C. hiemalis SDSU 17017 NB Simpon 13/91981W 100 0 0 0 H C. juncea SDSU 17017 NB Simpon 13/91981W 100 0 0 0 H C. latens SDSU 17005 L Acme 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Acme 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Acme 29 9/26/2005 48 51 0 H C. latens SDSU 17030	C. dielsii						0	
C. drummondii PERTH 6238408 F Obbens 6102 3/11/2002 20 60 20 0 H C. jestucacea ssp. filifolia SDSU 17052 MG Simpson 91X1981H 100 0 0 0 H C. festucacea ssp. filifolia PERTH 2055236 SD Hopper 2609 169/1982 83 17 0 H C. hiemalis PERTH 2055270 SD Hopper 2609 169/1982 83 17 0 H C. hiemalis SDSU 17031 NB Pierce 273 2/92007 100 0 0 Coll C. juncea SDSU 17031 MG Simpson 13/9/1981W 100 0 0 H C. latens PERTH 6386587 P Foremar 428 13/09/2004 100 0 0 H C. latens SDSU 17009 L Aeme 29 926/2005 48 51 1 0 H C. latens SDSU 17009 L Aeme 29 926/2005 77 0 1 H C. latens SDSU 17009 J Soett 450 3-09/2001 97 3 0 0 H <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	*							
C. festucacea ssp. fit/folia SDSU 17052 MG Simpson 91X1981H 100 0 0 0 H C. festucacea ssp. fit/folia FERTH 2055250 SD Hopper 2609 16/9/1982 83 17 0 H C. hiemalis FERTH 2055570 SD Hopper 1661 31/07/1980 100 0 0 H C. hiemalis SDSU 17031 MG Simpson 13/971981W 100 0 0 H C. hiemalis SDSU 17031 MG Simpson 13/971981W 100 0 0 H C. Jiancea PERTH 6386587 P Foreman 428 13/09/2004 100 0 0 H C. Latens SDSU 17009 L Aeme 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Aeme 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Aeme 29 9/26/2005 48 51 0 H C. latens SDSU 17030 J Scott 450 3-00/2011 97 20 1 0 H	*		* *					
C. festucacea ssp. filifolia SDSU 17007 L Aeme 52 9/26/2005 87 12 1 0 H C. festucacea ssp. filifolia PERTH 2055250 SD Hopper 1603 11/07/1980 00 0 0 H C. hiemalis SDSU 19127 NB Pierce 273 2/9/2007 100 0 0 0 H C. hiemalis SDSU 17031 MG Simpson 13/9/1981W 100 0 0 0 H C. juncea PERTH 6986587 P Foreman 428 13/09/2004 100 0 0 H C. latens PERTH 1634151 EA Griffin 4944 9/9/1988 43 55 2 0 H C. latens SDSU 17009 L Aeme 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Aeme 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Aeme 29 9/26/2005 3 77 0 0 H C. micrantha K SD Hopper 2468 23 77 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
C. festucacea sp. filifolia PERTH 2055236 SD Hopper 2609 16/9/1982 83 17 0 H C. hiemalis PERTH 2055570 SD Hopper 1661 31/07/1980 100 0 0 0 H C. hiemalis SDSU 19127 NB Pirce 273 2/92007 100 0 0 0 H C. juncea SDSU 17031 MG Simpson 13/9/1981W 100 0 0 0 H C. latens PERTH 684587 P Foreman 428 13/09/2004 100 0 0 H C. latens SDSU 17009 L Aerne 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Aerne 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Aerne 29 9/26/2005 79 20 1 0 H C. latens SDSU 17019 L Aerne 29 9/26/2005 79 0 0 H C. nicrantha K SD Hopper 1469 12/21/67 79 20 1 H	J 1 J		1					
C. hiemalis PERTH 2055570 SD Hopper 1661 31/07/1980 100 0 0 0 H C. hiemalis SDSU 19127 NB Pierce 273 2/9/2007 100 0 0 0 Coll. C. juncea SDSU 17031 MG Simpson 13/9/1981W 100 0 0 0 H C. juncea PERTH 6986587 P Foreman 428 13/09/2004 100 0 0 H C. latens PERTH 1634151 EA Griffin 4944 9/9/1988 43 55 2 0 H C. latens SDSU 1700 L Acme 29 9/26/2005 48 51 1 0 H C. latens SDSU 1700 L Acme 29 9/26/2005 48 51 1 0 H C. micrantha K SD Hopper 1149 12/2/1967 79 20 1 0 H C. micrantha PERTH 5414164 RM Evans 11 15/08/1998 55 45 0 0 H C. micrantha PERTH 2056860 EA Griffin 942 2/8/1977 9 90 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>							0	
C. hiemalis SDSU 19127 NB Pierce 273 2/9/2007 100 0 0 Coll. C. juncea SDSU 17031 MG Simpson 13/9/1981W 100 0 0 0 H C. juncea PERTH 6986587 P Foreman 428 13/09/2004 100 0 0 0 H C. latens PERTH 1634151 E.A Griffin 4944 9/9/1988 43 55 2 0 H C. latens SDSU 17009 L Acme 29 9/26/2005 48 51 1 0 H C. latens SDSU 17009 L Acme 29 9/26/2005 48 51 1 0 H C. lacidspermoides K SD Hopper 149 12/2/1967 79 20 1 0 H C. incorunha K SD Hopper 2468 23 77 0 0 H C. neocymosa K PIRTH 2058600 EA Griffin 942 2/8/1977 9 90 1 H C. pauciflora PERTH 12056860 EA Griffin 942 2/8/1979 97 <td< td=""><td></td><td></td><td>* *</td><td></td><td></td><td></td><td>0</td><td></td></td<>			* *				0	
C. juncea SDSU 17031 MG Simpson 13/9/1981W 100 0 0 0 H C. juncea PERTH 6986587 P Foreman 428 13/09/2004 100 0 0 0 H C. latens PERTH 1634151 EA Griffin 4944 9/9/1988 43 55 2 0 H C. latens SDSU 17009 L Aerne 29 9/26/2005 48 51 1 0 H C. latens SDSU 17031 J Scott 450 3-/09/2001 97 3 0 0 H C. nicrantha PERTH 5625300 J Scott 450 3-/09/2001 97 3 0 0 H C. nicrantha PERTH 5414164 RM Evans 11 15/08/1998 55 45 0 0 H C. niccramtha PERTH 2056860 EA Griffin 942 2/8/1977 9 90 1 H C. pauciflora PERTH 121056860 EA Griffin 942 2/8/1977 9 90 1 0 H C. pauciflora spp. pauciflora PERTH 121056860 EA Griffin 942 2/8/1976			**					
C. junceaPERTH 6986587P Forman 428 13/09/20041000000HC. latensPERTH 1634151EA Griffin 4944 99/1988435520HC. latensSDSU 17009L Acrne 29 9/26/2005485110HC. latigitoraPERTH 5625300J Scott 450 3-/09/200197300HC. leipidospermoidesKSD Hopper 1149 12/2/1967792010HC. micranthaPERTH 5414164RK Evans 11 15/08/1998554500HC. neocymosaPERTH 5414164RK Evans 11 15/08/1998554500HC. neocymosaPERTH 4056860EA Griffin 942 2/8/19779901HC. paucifloraPERTH 4463684KJ Keighery 452 8/1019/9297300HC. pauciflora spp. euryhipisSDSU 16915L Acrne 24 9/26/200599100HC. pauciflora spp. aucifloraPERTH 12/1989SD Hopper 4878 13/06/198694600HC. petrophilioidesRSA 208604R Lullifern 65141 8/10/1966287110HC. phathyranthaKCA Gardner 16/9/193400100HC. prohifieraPERTH 588238R Davis WW 0740 2500/200096400HC. pusillaPERTH 5488237R Masin 767 28/09/1070495100H								
C. latens PERTH 1634151 EA Griffin 4944 9/9/1988 43 55 2 0 H C. latens SDSU 17009 L Aeme 29 9/26/2005 48 51 1 0 H C. latiflora PERTH 5625300 J Scott 450 3-/09/2001 97 3 0 0 H C. lacidospermoides K SD Hopper 1149 12/2/1967 79 20 1 0 H C. micrantha K SD Hopper 1149 12/2/1967 79 20 0 H C. neocymosa K PI Randall 50 3/9/1992 10 90 0 H C. neocymosa PERTH 2056860 EA Griffin 942 2/8/1977 9 90 1 H C. pauciflora PERTH 4463684 KJ Keighery 452 8/1019/92 97 3 0 0 H C. pauciflora spp. pauciflora PERTH 1271989 SD Hopper 478 13/06/1986 94 6 0 0 H C. pauciflora spp. pauciflora PERTH 207939 MA Burgma 1714 48/1983 0 0			*					
C. latens SDSU 17009 L. Aerne 29 9/26/2005 48 51 1 0 H C. laxiflora PERTH 5625300 J. Scott 450 3-/09/2001 97 3 0 0 H C. lepidospermoides K SD Hopper 1149 12/21/967 79 20 1 0 H C. nicrantha K SD Hopper 2468 23 77 0 0 H C. micrantha PERTH 5414164 RM Evans 11 15/08/1998 55 45 0 0 H C. neocymosa K PJ Randall 50 3/9/1992 10 90 0 0 H C. pauciflora PERTH 4463684 KJ Keighery 452 8/1019/92 73 0 0 H C. pauciflora PERTH 12056860 EA Griffin 942 2/8/107/97 9 90 1 0 0 H C. pauciflora PERTH 12056860 EA Griffin 942 2/8/1019/2 77 3 0 0 H C. pauciflora spp. euryhipis SDSU 16915 L Aerne 24 9/26/2005 99 1 0 H C. pauciflora spp. pauciflora <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
C. laxiflora PERTH 5625300 J Scott 450 3-/09/2001 97 3 0 0 H C. lepidospermoides K SD Hopper 1149 12/2/1967 79 20 1 0 H C. micrantha K SD Hopper 2468 23 77 0 0 H C. micrantha PERTH 5414164 RM Evans 11 15/08/1998 55 45 0 0 H C. neocymosa PERTH 2056860 EA Griffin 942 2/8/1077 9 90 1 H C. pauciflora PERTH 4463684 KJ Keighery 452 8/1019/92 97 3 0 0 H C. pauciflora spp. euryhipis SDSU 16915 L Acme 24 9/26/2005 99 1 0 0 H C. pauciflora spp. pauciflora PERTH 1271989 SD Hopper 4878 13/06/1986 94 6 0 0 H C. pathyrantha RSA 208604 R Lullifern 65141 8/10/1966 28 71 1 0 H C. phathyrantha K CA Gardner 16/9/1934 0 0 100 H C C. prolifera								
C. lepidospermoides K. SD Hopper 1149 12/2/1967 79 20 1 0 H C. micrantha K. SD Hopper 2468 23 77 0 0 H C. micrantha PERTH 5414164 RM Evans 11 15/08/1998 55 45 0 0 H C. neocymosa K PJ Randall 50 3/9/1992 10 90 0 0 H C. neocymosa PERTH 2056860 EA Griffin 942 2/8/1977 9 90 1 H C. pauciflora PERTH 4463684 KJ Keighery 452 8/1019/92 97 3 0 0 H C. pauciflora spp. euryhipis SDSU 16915 L Aerne 24 9/26/2005 99 1 0 0 H C. petrophilioides SDSU 17030 MG Simpson 27IX1981B 40 60 0 H C. protiphilioides RSA 208604 R Lullifern 65141 8/10/1966 28 71 1 0 H C. protipifra PERTH 2079399 MA Burgma 1714 4/8/1983 0 <								
C. micrantha K SD Hopper 2468 23 77 0 0 H C. micrantha PERTH 5414164 RM Evans 11 15/08/1998 55 45 0 0 H C. neocymosa K PJ Randall 50 39/1992 10 90 0 0 H C. neocymosa PERTH 2056860 EA Griffin 942 2/8/1977 9 90 1 H C. pauciflora PERTH 4463684 KJ Keighery 452 8/1019/92 97 3 0 0 H C. pauciflora spp. euryhipis SDSU 16915 L Aerne 24 9/26/2005 99 1 0 0 H C. pauciflora spp. pauciflora PERTH 1271989 SD Hopper 4878 13/06/1986 94 6 0 0 H C. petrophilioides SDSU 17030 MG Simpson 271X1981B 40 60 0 0 H C. phathyrantha K C A Gardner 16/9/1934 0 0 0 0 H C. prolifera SDSU 16917 L Aerne 51 9/26/2005 100 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-							
C. micrantha PERTH 5414164 RM Evans 11 15/08/1998 55 45 0 0 H C. neocymosa K PJ Randall 50 3/9/1992 10 90 0 0 H C. neocymosa PERTH 2056860 EA Griffin 942 2/8/1977 9 90 1 H C. pauciflora PERTH 4463684 KJ Keighery 452 8/1019/92 97 3 0 0 C. pauciflora spp. euryhipis SDSU 16915 L Aeme 24 9/26/2015 99 1 0 0 C. pauciflora spp. pauciflora PERTH 1271989 SD Hopper 4878 13/06/1986 94 6 0 0 H C. pauciflora spp. pauciflora PERTH 20730 MG Simpson 271X1981B 40 60 0 0 H C. pathyrantha K C AGardner 16/9/1934 0 0 10 B H C. phathyrantha K C AGardner 16/9/1934 0 0 10 B H C. prolifera DERTH 5868238 R Davis WW 0740 25/09/2000 96	* *							
C. neocymosa K PJ Randall 50 3/9/1992 10 90 0 0 H C. neocymosa PERTH 2056860 EA Griffin 942 2/8/1977 9 90 1 H C. neocymosa PERTH 4463684 KJ Keighery 452 8/1019/92 97 3 0 0 H C. pauciflora PERTH 4463684 KJ Keighery 452 8/1019/92 97 3 0 0 H C. pauciflora PERTH 1271989 SD Hoper 4878 13/06/1986 94 6 0 0 H C. petrophilioides SDSU 17030 MG Simpson 271X1981B 40 60 0 0 H C. petrophilioides RSA 208604 R Lullifem 65141 8/10/1966 28 71 1 0 H C. protpifera RSA 208604 R Lullifem 65141 8/10/1966 28 71 1 0 H C. prothifera SDSU 16917 L Aeme 51 9/26/2005 100 0 100 H C. prolifera PERTH 207214 EM Camming 68 3777 1/10/1968			**					
C. neocymosa PERTH 2056860 EA Griffin 942 2/8/1977 9 90 1 H C. pauciflora PERTH 4463684 KJ Keighery 452 8/1019/92 97 3 0 0 H C. pauciflora spp. euryhipis SDSU 16915 L Aerne 24 9/26/2005 99 1 0 0 H C. pauciflora spp. pauciflora PERTH 1271989 SD Hopper 4878 13/06/1986 94 6 0 0 H C. petrophilioides SDSU 17030 MG Simpson 271X1981B 40 60 0 0 H C. petrophilioides RSA 208604 R Lullifern 65141 8/10/1966 28 71 1 0 H C. protifera PERTH 2079399 MA Burgma 1714 4/8/1983 0 0 100 H C. prolifera SDSU 16917 L Aerne 51 9/26/2005 100 0 0 H C. prolifera PERTH 2102714 EM Camming 68 3777 1/10/1968 76 24 0 H C. pusilla PERTH 488927 BR Maslin 767 28/09/1970 49 51 0 0 H C. resinosa SDSU								
C. pauciflora PERTH 4463684 KJ Keighery 452 8/1019/92 97 3 0 0 H C. pauciflora spp. euryhipis SDSU 16915 L Aerne 24 9/26/2005 99 1 0 0 H C. pauciflora spp. euryhipis SDSU 16915 L Aerne 24 9/26/2005 99 1 0 0 H C. pauciflora spp. pauciflora PERTH 1271989 SD Hopper 4878 13/06/1986 94 6 0 0 H C. petrophilioides SDSU 17030 MG Simpson 271X1981B 40 60 0 0 H C. petrophilioides RSA 208604 R Lullifern 65141 8/10/1966 28 71 1 0 H C. phathyrantha K CA Gardner 16/9/1934 0 0 0 100 H C. prohifera SDSU 16917 L Aerne 51 9/26/2005 100 0 0 H C. prolifera PERTH 2102714 EM Camming 68 3777 1/10/1968 76 24 0 H C. pusilla PERTH 6488927 BR Maslin 767 28/09/1970 49 51 0 0 H <t< td=""><td>*</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td></t<>	*						0	
C. pauciflora spp. euryhipisSDSU 16915L Aeme 24 9/26/200599100HC. pauciflora spp. paucifloraPERTH 1271989SD Hopper 4878 13/06/198694600HC. petrophilioidesSDSU 17030MG Simpson 27IX1981B406000HC. petrophilioidesRSA 208604R Lullifem 65141 8/10/1966287110HC. petrophilioidesRSA 208604R Lullifem 65141 8/10/1966287110HC. phathyranthaKCA Gardner 16/9/1934000100HC. phathyranthaPERTH 2079399MA Burgma 1714 4/8/19830000HC. proliferaSDSU 16917L Aerne 51 9/26/2005100000HC. proliferaPERTH 5868238R Davis WW 0740 25/09/200096400HC. pusillaPERTH 6488927BR Maslin 767 28/09/1970495100HC. resinosaSDSU 16918L Aerne 44 9/26/200510000HC. resinosaPERTH 4975952SD Hopper 5183 8/8/198610000HC. robustaSDSU 16985L Aerne 49 9/26/200510000HC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 688644GJ Keighery 5214 23/091997465220H <tr <tr="">C. rogeriPER</tr>	-						0	
C. pauciflora pp. pauciflora PERTH 1271989 SD Hopper 4878 13/06/1986 94 6 0 0 H C. petrophilioides SDSU 17030 MG Simpson 27IX1981B 40 60 0 0 H C. petrophilioides RSA 208604 R Lullifern 65141 8/10/1966 28 71 1 0 H C. petrophilioides RSA 208604 R Lullifern 65141 8/10/1966 28 71 1 0 H C. petrophilioides RSA 208604 R Lullifern 65141 8/10/1966 28 71 1 0 H C. pathyrantha K CA Gardner 16/9/1934 0 0 0 100 H C. phathyrantha PERTH 2079399 MA Burgma 1714 4/8/1983 0 0 100 89 H C. prolifera PERTH 5868238 R Davis WW 0740 25/09/2000 96 4 0 0 H C. pusilla PERTH 2102714 EM Camming 68 3777 1/10/1968 76 24 0 0 H C. resinosa DSU 16918 L Aerne 44 9/26/2005 100 0 0	* v							
C. petrophilioidesSDSU 17030MG Simpson 27IX1981B406000HC. petrophilioidesRSA 208604R Lullifern 65141 8/10/1966287110HC. phathyranthaKCA Gardner 16/9/1934000100HC. phathyranthaPERTH 2079399MA Burgma 1714 4/8/1983001089HC. proliferaSDSU 16917L Aerne 51 9/26/2005100000HC. proliferaPERTH 5868238R Davis WW 0740 25/09/200096400HC. pusillaPERTH 2102714EM Camming 68 3777 1/10/1968762400HC. resinosaSDSU 16918L Aerne 44 9/26/2005100000HC. resinosaSDSU 16918L Aerne 44 9/26/200510000HC. resinosaSDSU 19129NB Pierce 277 9/4/200694600Coll.C. robustaSDSU 16985L Aerne 49 9/26/200510000HHC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/2005100000H								
C. petrophilioidesRSA 208604R Lullifern 65141 8/10/1966287110HC. phathyranthaKCA Gardner 16/9/1934000100HC. phathyranthaPERTH 2079399MA Burgma 1714 4/8/1983001089HC. proliferaSDSU 16917L Aerne 51 9/26/2005100000HC. proliferaPERTH 5868238R Davis WW 0740 25/09/200096400HC. proliferaPERTH 2102714EM Camming 68 3777 1/10/1968762400HC. pusillaPERTH 6488927BR Maslin 767 28/09/1970495100HC. resinosaSDSU 16918L Aerne 44 9/26/200510000HC. resinosaPERTH 4975952SD Hopper 5183 8/8/198610000HC. robustaSDSU 16985L Aerne 49 9/26/200510000HC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/200510000H			**					
C. phathyranthaKCA Gardner 16/9/1934000100HC. phathyranthaPERTH 2079399MA Burgma 1714 4/8/1983001089HC. proliferaSDSU 16917L Aerne 51 9/26/2005100000HC. proliferaPERTH 5868238R Davis WW 0740 25/09/200096400HC. proliferaPERTH 5868238R Davis WW 0740 25/09/200096400HC. pusillaPERTH 2102714EM Camming 68 3777 1/10/1968762400HC. pusillaPERTH 6488927BR Maslin 767 28/09/1970495100HC. resinosaSDSU 16918L Aerne 44 9/26/200510000HC. resinosaPERTH 4975952SD Hopper 5183 8/8/198610000HC. resinosaSDSU 16985L Aerne 49 9/26/200510000HC. robustaSDSU 16985L Aerne 49 9/26/200510000HC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/200510000H	· ·							
C. phathyranthaPERTH 2079399MA Burgma 1714 4/8/1983001089HC. proliferaSDSU 16917L Aerne 51 9/26/2005100000HC. proliferaPERTH 5868238R Davis WW 0740 25/09/200096400HC. proliferaPERTH 5868238R Davis WW 0740 25/09/200096400HC. pusillaPERTH 2102714EM Camming 68 3777 1/10/1968762400HC. pusillaPERTH 6488927BR Maslin 767 28/09/1970495100HC. resinosaSDSU 16918L Aerne 44 9/26/2005100000HC. resinosaPERTH 4975952SD Hopper 5183 8/8/198610000HC. resinosaSDSU 16985L Aerne 49 9/26/200510000Coll.C. robustaSDSU 16985L Aerne 49 9/26/200510000HC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/200510000H	* *				0	0	100	Н
C. proliferaSDSU 16917L Aerne 51 9/26/2005100000HC. proliferaPERTH 5868238R Davis WW 0740 25/09/200096400HC. pusillaPERTH 2102714EM Camming 68 3777 1/10/1968762400HC. pusillaPERTH 6488927BR Maslin 767 28/09/1970495100HC. resinosaSDSU 16918L Aerne 44 9/26/2005100000HC. resinosaPERTH 4975952SD Hopper 5183 8/8/198610000HC. resinosaSDSU 19129NB Pierce 277 9/4/200694600Coll.C. robustaSDSU 16985L Aerne 49 9/26/200510000HC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/2005100000H	· ·	PERTH 2079399	MA Burgma 1714 4/8/1983	0	0	10	89	Н
C. proliferaPERTH 5868238R Davis WW 0740 25/09/200096400HC. pusillaPERTH 2102714EM Camming 68 3777 1/10/1968762400HC. pusillaPERTH 6488927BR Maslin 767 28/09/1970495100HC. resinosaSDSU 16918L Aerne 44 9/26/2005100000HC. resinosaPERTH 4975952SD Hopper 5183 8/8/198610000HC. resinosaSDSU 19129NB Pierce 277 9/4/200694600Coll.C. robustaSDSU 16985L Aerne 49 9/26/200510000HC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/2005100000H		SDSU 16917		100	0	0	0	Н
C. pusillaPERTH 6488927BR Maslin 767 28/09/1970495100HC. resinosaSDSU 16918L Aerne 44 9/26/2005100000HC. resinosaPERTH 4975952SD Hopper 5183 8/8/1986100000HC. resinosaSDSU 19129NB Pierce 277 9/4/200694600Coll.C. robustaSDSU 16985L Aerne 49 9/26/2005100000HC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/2005100000H		PERTH 5868238	R Davis WW 0740 25/09/2000	96	4	0	0	Н
C. resinosa SDSU 16918 L Aerne 44 9/26/2005 100 0 0 H C. resinosa PERTH 4975952 SD Hopper 5183 8/8/1986 100 0 0 H C. resinosa SDSU 19129 NB Pierce 277 9/4/2006 94 6 0 0 Coll. C. robusta SDSU 16985 L Aerne 49 9/26/2005 100 0 0 0 H C. rogeri K SD Hopper 1139 12/2/1987 11 81 8 0 H C. rogeri PERTH 6884644 GJ Keighery 5214 23/091997 46 52 2 0 H C. seminuda SDSU 16986 L Aerne 35 9/25/2005 100 0 0 0 H	C. pusilla	PERTH 2102714	EM Camming 68 3777 1/10/1968	76	24	0	0	Н
C. resinosaPERTH 4975952SD Hopper 5183 8/8/198610000HC. resinosaSDSU 19129NB Pierce 277 9/4/200694600Coll.C. robustaSDSU 16985L Aerne 49 9/26/2005100000HC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/2005100000H	C. pusilla	PERTH 6488927	BR Maslin 767 28/09/1970	49	51	0	0	Н
C. resinosa SDSU 19129 NB Pierce 277 9/4/2006 94 6 0 0 Coll. C. robusta SDSU 16985 L Aerne 49 9/26/2005 100 0 0 0 H C. rogeri K SD Hopper 1139 12/2/1987 11 81 8 0 H C. rogeri PERTH 6884644 GJ Keighery 5214 23/091997 46 52 2 0 H C. seminuda SDSU 16986 L Aerne 35 9/25/2005 100 0 0 H	C. resinosa	SDSU 16918	L Aerne 44 9/26/2005	100	0	0	0	Н
C. robustaSDSU 16985L Aerne 49 9/26/200510000HC. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/2005100000H	C. resinosa	PERTH 4975952	SD Hopper 5183 8/8/1986	100	0	0		Н
C. rogeriKSD Hopper 1139 12/2/1987118180HC. rogeriPERTH 6884644GJ Keighery 5214 23/091997465220HC. seminudaSDSU 16986L Aerne 35 9/25/2005100000H	C. resinosa	SDSU 19129	NB Pierce 277 9/4/2006	94	6	0	0	Coll.
C. rogeri PERTH 6884644 GJ Keighery 5214 23/091997 46 52 2 0 H C. seminuda SDSU 16986 L Aerne 35 9/25/2005 100 0 0 H	C. robusta	SDSU 16985	L Aerne 49 9/26/2005	100	0	0	0	Н
<i>C. seminuda</i> SDSU 16986 L Aerne 35 9/25/2005 100 0 0 H	C. rogeri		SD Hopper 1139 12/2/1987	11	81		0	Н
	0							
C. seorsiflora RSA 267636 AE Orchard 1640 18/10/1968 98 2 0 0 H	C. seminuda							
C. seorsiflora K EHS Jackson 1242 17/9/1982 87 13 0 0 H								
C. seorsiflora ssp. Nyabing PERTH 5888166 MS Graham 1135 18/10/2000 88 12 0 0 H								
C. seorsiflora spp. seorsiflora PERTH 6362362 M Bennett 512 28/08/1999 94 6 0 0 H	· · · ·							
C. setigera RSA 302862 HS Stewart 15/8/1959 10 82 8 0 H	0							
C. setigera RSA 228555 TH Aplin 3193 7/9/1970 18 80 2 0 H	-		*					
C. setigera PERTH 5320011 K Kershaw C002 15/09/1998 3 78 18 1 H	C. setigera	PERTH 5320011	K Kershaw C002 15/09/1998	3	/8	18	1	Н

Appendix 1. (continued)

Taxon	Acc. no.	Collector	% Bi	%Tri	%Te	% Polyp.	Sp.Orig.
C. setigera	К	A Morrison 20131 6/9/1910	25	67	8	0	Н
Conostylis setigera spp. dasys	PERTH 1463667	M Graham 311 19/11/1990	2	96	2	0	Н
C. setigera ssp. dasys	SDSU 16987	L Aerne 58 9/27/2005	30	70	0	0	Н
C. setigera ssp. setigera	PERTH 2106116	SD Hopper 2624 5/10/1982	23	75	2	0	Н
C. setigera ssp. setigera	PERTH 2080060	EM Bennett 2790 2/9/1968	25	74	1	0	Н
C. setosa	PERTH 6168272	H Wells 29 11/10/2001	4	69	27	0	Н
C. setosa	RSA 189046	TH Aplin 3159	5	92	3	0	Н
C. stylidioides	SDSU	MG Simpson 9IX81K	92	8	0	0	Н
C. stylidioides	RSA 228567	R Coreny 3032	98	2	0	0	Н
C. stylidioides	PERTH 2082438	SD Hopper 552 18/08/1975	85	15	0	0	Н
C. teretifolia	PERTH 6392326	MA Langley 2087 22/09/1999	2	71	23	4	Н
C. teretifolia	POM 325149	ES Lathrop 26/8/1976	13	85	2	0	Н
C. teretifolia ssp. planescens	SDSU 16989	L Aerne 28 9/25/2005	26	73	1	0	Н
C. teretifolia ssp. teretifollia	SDSU 16990	L Aerne 36 9/25/2005	1	89	10	0	Н
C. teretifolia ssp. teretifollia	PERTH 5477263	M Hislop 1501 13/09/1999	3	90	7	0	Н
C. teretifolia ssp. teretifollia	SDSU 19130	NB Pierce 276 2/9/2007	1	88	11	0	Coll.
C. teretiuscula	RSA 281411	S Carlquist 9/23/1974	70	30	0	0	Н
C. teretiuscula	PERTH 1633031	EA Griffin 4910 11/8/1988	60	40	0	0	Н
C. tomentosa	SDSU 16992	L Aerne 43 9/26/2005	100	0	0	0	Н
C. tomentosa	Κ	SD Hopper 5184 8/8/1986	100	0	0	0	Н
C. vaginata	RSA 267643	AE Orchard 1500 12/10/1969	75	25	0	0	Н
C. vaginata	PERTH 5645638	JW Horn 2643 28/09/1999	80	20	0	0	Н
C. vaginata	Κ	AH Rodd 5042 17/11/1985	35	65	0	0	Н
C. vaginata	SDSU 17036	MG Simpson 27IX1981C	55	42	3	0	Н
C. villosa	SDSU 16993	L Aerne 55 9/27/2005	55	45	0	0	Н
C. villosa	PERTH 07246331	T Watson 488 28/09/2003	70	30	0	0	Н
C. wonganensis	PERTH 1002732	AS George s.n. 31/08/1976	55	45	0	0	Н
C. wonganensis	SDSU 16994	L Aerne 53 9/27/2005	68	32	0	0	Н
Macropidia fuliginosa	PERTH 2086166	WE Blackall 3632 27/08/1938	100	0	0	0	Н
Phlebocarya ciliata	SDSU 17022	MG Simpson 18IX1981A	100	0	0	0	Н
P. pilossisima ssp. teretifolia	PERTH 5874084	R Davis 10098 20/09/2001	100	0	0	0	Н
Tribonanthes brachypetala	PERTH 2088150	BR Maslin 670A 4/8/1970	0	0	0	100	Н
T. brachypetala	PERTH 2088169	R Helms 19/07/1897	0	0	0	100	Н
T. longipetala	PERTH 7296029	S Patrick 1509 19/08/1993	0	0	0	100	Н
T. purpurea	PERTH 6985181	GJ Keighery 270 1/8/2004	0	0	0	100	Н

Appendix 1. (continued)