

Soil Ecology of two endangered edaphic endemic plants:

Acanthomintha ilicifolia and Deinandra conjugens

Spring Strahm, Patricia Gordon-Reedy and Jessie Vinje

Clay Soils

- Alkaline ("basic")
 - High pH and CEC
 - Retains nutrients: Ca²⁺, Mg²⁺, K⁺ & Na⁺
 - Binds others
- Retains water
- Other stuff:
 - Expansive
 - Hard

Management Options

- Preserve & enhance extant occurrences
- Locate suitable but unoccupied sites
 - Enhance, translocate
- What is suitable?

Challenges

- Limited number of occurrences
- Soil variables are interrelated
- Soils are patchy (noisy data)
- Need to compare against "typical" soil
- Averages are insufficient

Spatially Matched Sampling

San Diego Thornmint

ACANTHOMINTHA ILICIFOLIA

Texture

High clay content

Soil structure/ porosity/ water retention?

Zinc & Iron

- Avoidance?
- Bound metals?

Copper

- Noise?
- Refugia?
- Bioaccumulation?
- Gabbroic soils?

Other Items

- Manganese
- pH
- SO⁴
- Phosphorus
- Organic matter
- Nitrate
- Sodium
- Boron
- Potassium

Otay tarplant

DEINANDRA CONJUGENS

Texture

Clay v. sand ratio?

Sodium & Magnesium

- Soil structure/ porosity/ water retention?
- Friability?

Fertility indicators

Competition avoidance?

Conclusions

Species	Life History	Soils	Photo
Deinandra conjugens	Late spring annual	Clays which are locally nutrient poor, within a narrow silt ratio	
Acanthomintha ilicifolia	Early spring annual	Clays low in sand, specific soil structure, & low in some metals	

Special Thanks To:

- Patricia Gordon-Reedy, CBI
- Jessie Vinje, CBI
- Dr. David Lipson, SDSU
- Dr. Kris Preston, SDMMP
- California Department of Fish and Wildlife Local Assistance Grant program

EXTRA SLIDES

CEC and pH

- Texture related
- Nutrient availability?

$$(Ca^{2+} + Mg^{2+} + K^{+} + Na^{+})$$

Summary

- High clay
 - CEC, pH, Ca, Mg likely linked
 - Fe, Zn, bound in the clay
 - Water retention
- Further study:
 - Physical properties: Structure, Density, Friability
 - Experiments: pH, clay, and chemical properties

Summary

- "Intermediate clay"
 - Lower clay, higher sand than other clay species
 - Silt may be important
- Tolerates low fertility relative to landscape
 - Competition avoidance?
- Further study
 - Salinity tolerant or need for expanding clay?
 - Fertility experiment

Principle Components Analy

- Texture and pH
- Ca:Mg
- Fertility

Factor	Texture & pH	Ca & Mg Balance	Fertility
В	0.608	0.471	0.178
Ca:Mg	-0.205	0.919	-0.007
Ca	0.774	0.488	0.191
Ca%	-0.011	0.931	-0.062
CEC	0.895	0.076	0.247
NO ₃	0.096	0.086	0.493
OM%	-0.052	0.118	0.649
PH	0.671	0.492	-0.217
SAND	-0.666	0.081	-0.303
SILT	-0.073	-0.079	0.402
SO ₄	-0.044	0.109	0.58
SOLSALT	0.03	0.371	0.412
Zn	-0.561	0.045	0.607

Next Steps

- Retest extreme outliers
- Greenhouse experiments
- Reciprocal transplants, common garden studies
- Leaf tissue assays
- Follow up on all borderline variables
- Compare microclimates

Gabbro Soils

- Alkaline ("basic")
 - higher CEC, higher pH
- Mafic: Mg and Fe enriched
 - Variable in composition
 - Mg, Fe, Ca, Al, Na

Parry's Tetracoccus

TETRACOCCUS DIOICUS

Totally Metal

- Tolerates relatively high Fe and Cu
 - (Or other associated metals not measured)
- Does not select for it, competition avoidance

Dehesa Nolina

NOLINA INTERRATA

pH

Fertility

Take Aways

- Effect of gabbro is local
- Gravitating toward more neutral pH?
- Calcium was the strongest predictor
- Contributing to OM pool?

Threadleaf Brodiaea

BRODIAEA FILIFOLIA

Texture and... sodium?

pH

Take Aways

- Prefers (relatively) acidic clays
 - Lower pH relative to other clay species
 - Is this San Diego specific?
- Sodium
 - Swelling clays
 - Clay is cation rich
 - Competitive edge