Plant Systematics Laboratory Manual

Dr. Michael G. Simpson San Diego State University

Copyright © 2013
by Michael G. Simpson

Plant Systematics Lab Manual Table of Contents

Syllabus Plant Systematics: Biology 530 iv-vii
Laboratory 1 Plant Systematics: An Overview 1
Laboratory 2 Phylogenetic Systematics 7
Laboratory 3 Evolution and Diversity of Green and Land Plants 19
Laboratory 4 Evolution and Diversity of Vascular Plants 21
Laboratory 5 Evolution and Diversity of Woody and Seed Plants 25
Laboratory 6 Evolution of Flowering Plants 29
Laboratory 7 Diversity and Classification of Flowering Plants: Amborellales-Monocots 31
Laboratory 8 Diversity and Classification of Flowering Plants: Eudicots 62
Laboratory 9 Plant Morphology 91
Laboratory 10 Plant Anatomy and Physiology 119
Laboratory 11 Plant Embryology 125
Laboratory 12 Palynology 127
Laboratory 13 Plant Reproductive Biology 129
Laboratory 14 Plant Molecular Systematics 133
Laboratory 15 Plant Identification 135
Laboratory 16 Plant Nomenclature 139
Laboratory 17 Plant Collecting and Documentation 143
Laboratory 18 Herbaria and Database Systems 157
Appendix 1 Plant Description 163
Appendix $2 \quad$ Plant Morphology Review 167
Appendix 3 SDSU Plants 179

Plant Systematics Laboratory \#1
 PLANT SYSTEMATICS: AN OVERVIEW

OBJECTIVES FOR THIS LABORATORY:

1. Review the major groups of plants.
2. Review the major concepts and terms of phylogenetic systematics.
3. Understand the basics of taxonomy by performing exercises in its components.

PLANT SYSTEMATICS

What is a plant?

Observe and label the examples of each of the major plant groups on display: liverworts, hornworts, mosses, lycophytes, psilophytes, equisetophytes, ferns, conifers, cycads, Ginkgo, Gnetales, and angiosperms (monocots and eudicots). Have your instructor check your labels.

Begin to think about the differences between these plant groups, such as the characters are used to separate them, and how they are related to one another. Why are all of these organisms called plants? Are any left out that have traditionally been called "plants?"

What is systematics?

Review the primary objective of systematics. As a class the following terms: cladogram, lineage/clade, common ancestor, divergence, speciation, apomorphy, monophyletic, paraphyletic/polyphyletics.

For the above plant groups, draw what you think is a phylogenetic tree (cladogram). Can you name some of the apomorphies that link these major groups together?

PLANT TAXONOMY

Taxonomy can be defined as the science dealing with the description, identification, nomenclature, and classification of life. The following are exercises to practice using these interrelated components.

Description

Description is assigning features or attributes to an entity. An important concept in taxonomic description is that of the character (a feature) and character states (two or more forms of a character).

Obtain a shoot (stem + leaves) from each of several species. Study these specimens. Then, working in a small group, come up with characters and corresponding character states, using Table 1.1. You may refer to the book for technical terms, but work quickly. The object here is to master the concept of character and character state; the actual technical terminology will be mastered later.

After you work on this for about 15 minutes, a member of each group should stand up and i) state and define one character; and ii) explain the character states for the taxa examined. Then, another group can explain a second character and character states. The object here is for the whole class to discuss and perhaps agree on the characters and character states.

OPTIONAL: Obtain a flower from a given plant species. Look at it with the naked eye or under a dissecting microscope. Next, describe the flower in writing to the best of your ability (using Table 1.2), spending no more than about 10 minutes. Discuss the types of words you used in this description? At a later time, your descriptions will be compared with those written after you have had training in descriptive morphological terminology. Hand in the flower description to your instructor.

Table 1.1 Description Exercise

No.	Scientific name		Character \#1:	Character \#2:	Character \#3:	Character \#4:
Character \#5:						
1.						
2.						
3.						
4.						
5.						
6.						

Table 1.2 Flower Description Exercise
Plant species: \qquad

Identification

Identification is associating an unknown entity with a known entity. There are several ways to identify a plant: specimen comparison, image comparison, taxonomic keys, and expert determination. The following will give you an introduction to these methods.
a. One tool used in identification is a taxonomic key. Working in a group, construct an indented and numbered dichotomous taxonomic key to the species that you studied above (from shoots), using the characters from Table 1.1. Begin by sorting the specimens into two groups and devising a character that distinguishes the two groups, with each group having a different character state of the character. This character and its states become the basis for the first couplet (composed of two leads) of the key. Next, divide each of these groups two subgroups, continuing this until you are left with one sample. In writing the key, be sure to list the organ or part first, then the character state. Do not list characters. For example, say "Leaves opposite, pinnately compound," not "Leaf arrangement opposite, leaf type pinnately compound." As you write the key, try to list more than one character state in some of the leads. Write onto Table 1.3.

After the key is written, select someone from your group to write one couplet on the board. The next group puts in a second couplet, etc., until the key is written. The whole class should agree on the best, final key.
b. Working together as a class, construct an indented and numbered dichotomous key to all of the students in the class. In writing the key, be sure to list the character first, then the character state. Divide the class into two, logical groups, and then each of these into two, etc. Think of characters and character states that describe the physical features of these people. To make it more interesting, only use characteristics visible only from the "neck up". What are some potential problems with some of the characters, e.g., in terms of variation? In what ways can class members be classified?
c. Review and examine taxonomic keys on-line, both dichotomous and polythetic. How does a polythetic (multi-entry) key differ from a dichotomous one? What are the advantages of the former?

Table 1.3 Identification Exercise: Key to Plant Species

Nomenclature

a. Syllabize and accent each of the names from the earlier exercise. Record onto Table 1.4. Practice pronouncing the names.
a. Use references to record the etymology (derivation and meaning) of these scientific names onto Table 1.4.
c. Working with a few other people, memorize the scientific names of the plant species identified. Ask your instructor about the correct or preferred pronunciation of each name. Use one or more of three methods to remember names: i) learn the etymology of the genus and specific epithet names and mentally connect that meaning with the plant; ii) use a mnemonic device, involving a vivid image, to associate the plant itself with a word that sounds like the scientific name of the species; and iii) practice, use repetition until the name becomes familiar. Recite each of the names when shown a sample of the plant.

Classification

a. Working together as a class, use available references to look up the common name, family, and native distribution of each of the plant species identified above. Place this information on the chalkboard or computer projector until all are completed. Then copy the information onto Table 1.4.

Note: Check out some Web pages, e.g., International Plant Names Index http://www.ipni.org, Angiosperm Phylogeny Website http://www.mobot.org/MOBOT/research/APweb/, or (for California plants) The Jepson Online Interchange http://ucjeps.berkeley.edu/interchange.html.

Table 1.4 Identification of Selected Taxa

No.	Scientific name Syllabize/Accent	Etymology (genus and spec. eptithet)	Family	Distribution
1.				
2.				
3.				
4.				
5.				
6.				

KEY TO TEN SELECTED TREES AT SAN DIEGO STATE UNIVERSITY

1. Trunk unbranched (at least above base); leaves more than two feet long, acrocaulis (arising near apex of trunks)
2. Trunk single; leaves pinnately compound, leaflets in more than one planeSyagrus romanzoffiana

2' Trunks multiple from rhizomatous base; leaves simple with large blade, blade often torn Strelitzia nicolai
1' Trunk with numerous lateral branches; leaves simple or compound, <3 feet long
3. Leaves simple
4. Leaves opposite, gen. $<10 \mathrm{~cm}$ long, narrowly oblanceolate, silvery-white belowOlea europaea
4^{\prime} Leaves alternate, > 10 cm long, elliptic, green or brown-red hairy below Magnolia grandiflora
3' Leaves compound (with two or more discrete leaflets)
5. Leaves ternately compound, with 3 leaflets Erythrina caffra
5 ' Leaves pinnately or bipinnately compound, with more than 3 leaflets
6. Leaves pinnately compound (leaflets along one main axis, the rachis)
7. Leaves usually whorled (usu. three per node), leaflets scabrous (rough, like sandpaper) Kigelia africana
7' Leaves alternate (one per node), leaflets smooth, not scabrous
8' Leaves paripinnate (without a terminal leaflet); leaflets widely elliptic, entire (without teeth) . .Ceratonia siliqua 8^{\prime} Leaves imparipinnate (with a terminal leaflet); leaflets elliptic, often with small teeth . . Schinus terebinthifolius
6' Leaves bipinnately compound (leaflets along secondary axes, rachillae) Jacaranda mimosifolia

Plant Systematics Laboratory \#2 PHYLOGENETIC SYSTEMATICS

OBJECTIVES

1. To understand and review the concepts and methodology of phylogenetic reconstruction.
2. To learn how to use a computer algorithm (MacClade) for visualizing cladograms and character evolution.
3. To explore interactive Web sites for investigating plant interrelationships.

PHYLOGENY RECONSTRUCTION EXERCISE

Study Figure 2.1, which illustrates eight species (A-H) of a hypothetical group of plants. This figure also shows a presumed extinct ancestor ("Anc"), which contains all ancestral characteristics. Your job is to infer relationships of the eight species of this taxon.
a) Working with a partner, name and record as many characters with associated character states as possible. Arrange these in a "Character x Taxon" data matrix, with "Taxa" in a column (at left) and "Characters" in a row at the top (Table 2.1). Name and record the character states of each character for each taxon.
b) For each character, circle those character states that are derived. Those shared by two or more taxa are synapomorphies, apomorphies that can be used to link together all taxa that possess them.
c) Draw the cladogram for the hypothetical organisms in the space at Table 2.2. Circle all monophyletic groups.
e) Use the data of Figure 2.2 to add to the data matrix. Do these new data confirm your original hypothesis of relationship? Refine the cladogram and redraw it in Table 2.3
d) From the refined cladogram devise an indented classification scheme at Table 2.4, both dichotomous and annotated. Make up new names for monophyletic groups as needed. Experiment with placing these new monophyletic groups into ranks, assuming that the ingroup (species A-H) represent a subfamily of plants.. What are the advantages and disadvantages of having ranks?

Figure 2.1 Hypothetical plants.

Table 2.1 Character X taxon matrix for hypothetical plant exercise (Figure 2.1) and most parsimonious cladogram (draw below).

Table 2.2 Most parsimonious cladogram (below), from data matrix of Table 2.1. Indicate all character state changes.

Figure 2.2 Added characters for hypothetical plants: pollen morphology (above) and ovule mrophology (below).

Table 2.3 Refined most parsimonious cladogram (below), from data matrix of Table 2.1, with pollen and ovule characters (Figure 2.2) added to original set. Indicate all character state changes.

Table 2.4 Classification scheme for taxa of Figure 2.1. A. Annotated. B. Dichotomous.
A.
B.

USE OF COMPUTER ALGORITHM FOR VISUALIZING CLADOGRAMS \& CHARACTERS

1. Computer phylogeny applications. If a computers are available, you may wish to explore one of the commonly used phylogeny software applications. The program we will be using for visualizing cladograms is: MacClade (Maddison and Maddison, 2000), written for computers using the Macintosh operating system. Other programs are available for Windows OS (e.g., Winclada; Nixon, 1999). These programs allow the user to input data, including taxa names and their characters and character states. They allow visualization of both the phylogenetic relationships of taxa and character state changes.

With the help of your instructor, enter a data file using MacClade, or some other phylogeny application for a given taxonomic group. You may use the data matrix in Table 2.4, illustrating relationships of the families of the Zingiberales.

See Appendix 2.1 for information on the use of MacClade. Engage the function that displays characters; visualize several of these, noting the distribution of their states. You may also "swap branches" on the cladogram, exploring alternative evolutionary hypotheses and noting the change in tree length. Try to find the most "optimal" (most parsimonious) tree by swapping branches and getting the shortest tree.

If time allows, choose a volunteer to re-draw the cladogram from MacClade onto the chalkboard. List each apomorphy illustrated on MacClade by placing the derived character state (apomorphy) beside a hatch-mark on the cladogram. Circle and tentatively name all monophyletic groups.

Review as a class the following terms: cladogram, lineage/clade, common ancestor, speciation, apomorphy, synapomorphy, autapomorphy, monophyletic, paraphyletic.

Table 2.5. Example data set of the families of the Zingiberales (from Plant Systematics, 2010, p. 51)

	Lf. Arr.	Seed Aril	Polyarc Root	Inner Med. Stamen	Raphides	Silica crystals
Cannaceae	distichous	+	+	+	-	+
Costaceae	monistichous	+	+	+	-	+
Heliconiaceae	distichous	+	+	+	+	-
Lowiaceae	distichous	+	-	-	+	-
Marantaceae	distichous	+	+	+	-	+
Musaceae	spiral	-	-	-	+	-
Strelitziaceae	distichous	+	+	-	+	-
Zingiberaceae	distichous	+	+	+	-	+

	Stamen number	Staminode petaloid	Perisperm	Out. Tepals fused	Anther type
Cannaceae	1	+	+	-	monothecal
Costaceae	1	+	+	+	bithecal
Heliconiaceae	5	-	-	-	bithecal
Lowiaceae	5	-	-	-	bithecal
Marantaceae	1	+	+	-	monothecal
Musaceae	5	-	-	-	bithecal
Strelitziaceae	5	-	-	-	bithecal
Zingiberaceae	1	+	+	+	bithecal

WEB SITES ON PLANT PHYLOGENY AND CLASSIFICATION

Log onto the Angiosperm Phylogeny Website http://www.mobot.org/MOBOT/Research/APweb, Tree of Life http://tolweb.org/tree, or TreeBase http://www.treebase.org/treebase/index.html. These web pages contains up to date information on the relationships of various organismal groups. Note that cladograms, characters, images, and apomorphies may be illustrated in an interactive format. Also note that some phylogenetic relationships and classification schemes may differ, indicating that workers in the field may disagree and that systematic studies have not yet unambiguously resolved all the details of phylogenetic relationships.

Appendix 2.1 Use of MacClade, version 4.05 (D. R. Maddison and W. P. Maddison, 2002)
A computer program for phylogeny and character visualization

Commands Commonly Used:

	NOTE: You must hold down the command Command Command Name while typing the next letter		
D	Trace Character	Trace	Function
E	Data Editor	Windows	View and edit data matrix
I	Character List	Characters	View character coding information
K	Trace All Changes	Trace	View apomorphic changes at each lineage
N	New File	File	Creates a new data file
\mathbf{O}	Open File	File	Open a file to display data matrix or tree(s)
R	Show MPRs Mode	Trace	Visualization of alternative char state changes
S	Save File	File	Save a file to memory; including all changes
T	Tree Window	Windows	View tree
W	Close File	File	Close a file, necessary before opening a file
Y	Tree List	Trees	Select alternative trees

Getting Started:

Open MacClade by double clicking on the MacClade "cladogram" icon.
Open a data file; e.g., select the MacClade Examples folder, then select Vertebrates by double clicking or by highlighting and then clicking Open. To open future data files, type Command \mathbf{O} or select Open File from the File menu. To close, type Command W or select Close File from the File menu.

Data matrix:

A spreadsheet with the character/taxon matrix will appear. If a tree appears instead, type Command E (or select Data Editor from the Windows menu). Briefly study this matrix. You may "scroll" through characters and taxa by clicking and holding on the arrows at the bottom or to the right. Note that taxa appear in the left column, character numbers and names in the top row, and character state names within the matrix. Selecting Transposed Matrix from the Display menu inverts the taxa/ characters rows and columns. Moving the "ruler" in the upper left corner changes column width. You may change the character state names to symbols (the character codes) by selecting Data Matrix Styles ${ }^{\circledR}$ Plain from the Display menu. Try making these changes.

Tree Visualization:

Type Command T (or select Tree Window from the Windows menu) and a tree will appear. If the tree appears too small or too large for your computer, select Expand Window or Reduce Window from the Display menu. (You may select from a list of trees by clicking Command \mathbf{Y} or selecting Tree List from the Tree menu.) If you wish the tree represented as 90° (instead of 45°) intersecting lines, select Tree Shape \& Size from the Display menu and click into the second icon. With the latter type of tree visualization, you may also specify that the branches be centered from the same menu.

Note the treelength, which for the "Bad Guess" cladogram of the Vertebrate data set is 35 character state changes. Also note the listing of number of taxa (10) and characters (13). If CI is not already visible on the data box in the lower right, select Consistency Index from the \sum menu.

Character/Character State Visualization:

Perhaps the most valuable feature of MacClade is the character tracing function, allowing for the
clear visualization of character state distributions for each character. Type Command \mathbf{D} (or select Trace Character from the Trace menu). Try typing Command \mathbf{D} a few times; it operates as a toggle switch. Note the character box that appears in the lower right corner and the optimized character state are displayed on the cladogram. Click the right arrow on the character box, noting how you may proceed through the character list in sequence.

Practice rearranging branches by placing the arrow anywhere on a clade, holding down the mouse button, "dragging" to another clade, and then releasing the mouse button. Note that you may rearrange branches with the character tracing function (Command \mathbf{D}) turned on. The new character state distribution will appear for this new topology. Try moving clades around to fit the relationships you think correct. Do this by going through the characters one at a time and grouping taxa based on apomorphies. For example, choose character \#1, "amnion". The character state distributions for absence/presence of an amnion are superimposed on individual clades. Drag the clades that possess an amnion into one group. Continue this for all other characters in the data set. Note that equivocal state optimizations appear as horizontal lines on given clades. Attempt to minimize the treelength (i.e., attain the most parsimonious tree) by noting the change in treelength in the tree data box. Note that CI changes inversely with treelength; thus, to find the most parsimonious tree, minimize treelength and maximize CI. (Hint: The most parsimonious tree is 19 steps long.)

After creating the most parsimonious "Vertebrate" cladogram, go through the character list once again. Choose the character \#1 again, "amnion." The presence of an amnion appears as an apomorphy for a monophyletic group, the "Amniotes," containing turtles, mammals, snakes, lizards, crocodiles, and birds. Select character \#2, "appendages." Note three different clade shadings (or colors) for the three character states. These are coded as "ordered." The presence of "legs only" is a synapomorphy for a monophyletic group, the "Tetrapods," containing salamanders, frogs, turtles, mammals, snakes, lizards, crocodiles, and birds; "legs only" became modified to "legs+wings" in the bird lineage. Note also the "uncertain" shading for the box above the "mammal" clade, indicating that the character state for mammals was coded as polymorphic (because only some mammals, i.e., bats, have wings). Select character \#3, "body covering," and note the tracings for five states, plus one for "equivocal," the latter indicating that there is no single most parsimonious state assignment for the clade immediately below the "Tetrapods." In other words, the occurrence of neither "smooth" nor "epidermal scales" body covering can be supported for the internode just above the "lungfish" clade. Note, in the next character, \#4, "thermoregulation," the convergent evolution of homeothermy in mammals and birds. Continue through the data set to get a feel for this feature of MacClade. Its value is in allowing easy visualization of character state changes and of alternative, equally parsimonious optimizations.

Type Command \mathbf{K} (or select Trace All Changes from the Trace menu). This allows you to show the total number of changes on each branch, where unambiguous (unequivocal) changes occur on the cladogram. By clicking on one of these clades, a listing of the specific changes occurring can be seen. To turn off this function, type Command \mathbf{K} again. By selecting Trace Labeling from the Display menu you have several options for display of state changes on the cladogram. Experiment with these.

As you trace character evolution using Command D (Trace Character from the Trace menu), you may discover "equivocal" areas (shaded with horizontal bars) on the cladogram. These represent nodes (HTUs, ancestors) that have alternative, equally parsimonious character states. To find out exactly how many equally parsimonious optimizations there are for a given equivocal lineages and exactly which character states are possible, type Command \mathbf{R} (or select Show MPRs Mode from the Trace menu). Using this function, you will see the shading/character states change at the equivocal node(s). Continue toggling (Command \mathbf{R}) and you will go through all possible reconstructions. A count of the number of equally parsimonious reconstructions can be obtained by choosing Number of MPRs from the Trace menu. Character 3, for example, has three equally parsimonious optimizations. (By choosing Expand

Clade from the Tools menu, you can click on the node of interest and obtain precisely the number of reconstructions under the assumption that the outgroup node is ancestral.)

For certain characters, a given cladogram topology may show an "equivocal" condition (shaded as horizontal bars) at a given internode that can be explained as either of two equally parsimonious character optimizations: DELTRAN (DELay TRANsformations) or ACCTRAN (ACCelerate TRANsformations). DELTRAN delays changes away from the root node, which in effect promotes convergent character evolution; ACCTRAN accelerates changes toward the root node, which maximized reversals. DELTRAN and ACCTRAN options may be visualized with MacClade as follows. First, select the character of interest on the tree with the Trace Character (Command D) option on. Then select Resolving Options from the Trace menu. Click either DELTRAN or ACCTRAN and then click OK (or type the Return key). Note the change in character optimization on the tree. Not all equivocal optimizations are resolved using DELTRAN or ACCTRAN.

Character Status:

Type Command I (or select Character List from the Characters menu). Note the display of characters, listing: a) character number; b) character name; c) whether included (box with a check) or excluded from the analysis (box with an " X "); d) character type (unordered, ordered, irreversible, stratigraphic, Dollo, or user-defined); e) character weight; f) number of character states; g) optimized number of character steps (for the current tree); and h) character CI. You may alter the first four variables by clicking on and highlighting a given row and then clicking the small arrow beside the column headings. To remove the Character Status box, click the upper left red spot (or Command W). Note that the default character type is unordered; thus, if you wish any to be ordered, irreversible, statigraphic, Dollo, or user defined, you must specify it.

Tools:

From the Windows menu select Tool Palette and note the Tool box that appears, with several functions, different in Edit mode (Command E) versus Tree mode (Command T). In Tree \& Display (Command D) mode, these are (from left to right, top to bottom):

1) Search Above
2) Reroot Tree
3) Make Ancestral
4) Exclude Clade
5) Move Branch
6) Polytomy Exchange
7) Rotate Branches
8) Rotate to Lean Right
9) Collapse Clade
10) Collapse Branch
11) Test Correlation
12) (Unused)
13) List States
14) (Unused)

Performs a search upward pass and selects that cladogram topology which is most parsimonious based on that upward pass.
Allows tree to be rerooted at any point.
Allows you to make a terminal OTU a direct ancestor at the immediate node below.
Allows exclusion of any particular clade; may be reversed by selecting Include-Exclude Taxa from the Tree menu.
This is the default setting, allowing you to move clades into different topologies.
Allows branch rearrangements within a polytomy.
Rotates branches at the node immediately above the clade selected.
Rearranges branches such that they are "ladderized"
Arranges every clade above a given branch into a polytomy.
Collapses a given clade, such that the immediate branches above form a polytomy with that/those below.
[Click in and read.]
Will list the character state at a given clade.
15) Fix States
16) (Unused)
17) Select in List Window Allows clicking on a given clade and viewing the matrix for taxa characteristics.
18) Set Evolve Segments
19) Expand Clade
20) Move Tree

Practice using the Rotate Branches command, a useful exercise for beginning students. Note that by flipping branches, the general appearance of the cladogram may change drastically, but the topology (and cladistic relationships) are unchanged. You may "ladderize" the cladogram (or a portion thereof) by selecting Rotate to Lean Right from the Tools menu.

Try the Expand Clade command. This may also be implemented by simply double-clicking with the Move Branch arrow on a clade internode. To reverse, double click on the basal-most internode.

Another useful exercise is to use the Reroot Tree command. This will not alter the topology of the unrooted tree, but it will definitely alter relationships in the rooted tree. The Make Ancestral command will collapse a terminal taxon to a hypothetical direct ancestor on the clade.

Polytomies (in which three or more clades arise from the same point) may be represented in the tree as follows. First, rearrange the branches such that those clades that will form a polytomy at a given node are placed into a monophyletic group of dichotomizing branches. Next, select Collapse Clade from the Tools menu and click into the root clade of this monophyletic group. Finally, select Collapse Branch from the Tools menu and click into the same root clade to remove it and create the polytomy.

MacClade is very limited with regard to finding most parsimonious trees. Thus, a powerful computer algorithm, such as PAUP, is needed to find all most parsimonious trees for even a modest data set. However, for relatively small data sets the Search Above command may be attempted.

Taking the Vertebrate data set as an example, begin by selecting the Bad Guess cladogram (trees seen using Command \mathbf{Y}). Note that "rayfinned fish" is at the most basal or outgroup position. Select the Search Above command from the Tools menu and click at the internode just above the common ancestor of "rayfinned fish" and the other taxa. Note the decrease in Tree Length and increase in CI. Is this tree equivalent to the tree that you obtained by manually swapping branches?

Another useful feature is that of arbitrarily changing the state of a given clade; i.e., the cladogram topology will remain unchanged but the most parsimonious character distribution will be altered. Select Fix States from the Tools menu. A paintbrush-like icon will appear. Move this icon (using the mouse) to the character box at the lower right. Click into the desired character state (shaded box) for a given character, then click into that clade for which you wish to change to the given state. The shading for that clade will change to that selected. To remove your character tracing alteration, select the Unfix all command from the Trace menu.

Formating New Data Files:

Enter a data set into MacClade. First, close any opened file by typing Command \mathbf{W} or selecting Close File from the File menu. Next, type Command N, or select New file from the File menu. MacClade utilizes a very handy user-friendly spreadsheet format, allowing you to easily enter and manipulate your data.

Type in the following: 1) Taxa (in left-hand column by default, which you may expand or contract
as needed by moving the mouse below until arrows appear, holding down the mouse button, and then moving up or down); 2) Characters, top row, which you may expand by selecting (from the Display menu) Data Matrix Styles, then Wide with State Names; 3) Character states (internal data matrix; should be entered initially as whole, non-negative numbers, from 0 onward). Polymorphic character states (in which more than one state apply) may be listed by typing all character states with either a space or a "/" between them. Taxa or characters may be moved to different rows or columns, respectively, by clicking at the far left or top and dragging the row or column to a new location.

After entering the raw data, name your characters and character states by selecting State Names \& Symbols from the Characters menu.

After entering all the data, you may visualize the state names (instead of numbers) by selecting Data Matrix Styles, then Wide with State Names from the Display menu.

MacClade allows you to assign "user defined characters," which allow for custom designing with regard to the number of state changes between character states of a multistate character. To define a user defined character, enter the data matrix (Command \mathbf{E}), then click into the top region of the character you wish assigned. (The entire column will become highlighted.) Next, from the Characters menu, select Edit Type. A listing of character codings will appear at the top (unordered, ordered, irreversible, etc.). If not already visualized, select "unordered" (the default). To define a new user defined character click New, name the user defined character; and then click Create. The new name will then appear in the character listing. Finally, alter the original "unordered matrix" as you desire by clicking into a cell, typing the desired number of state changes, and clicking Enter. When finished, click OK (or type the Return key). This user defined character may be used for other characters of the data matrix (Command \mathbf{E}) by typing Command \mathbf{I}, clicking into a character (highlighting the entire row), then clicking the character Type and selecting a particular character coding. Type Command I or select Character Status from the Display menu to visualize the status of your characters.

When you are finished, select "Close file" from the File menu. You will be asked whether or not to save the tree or to save the (revised) data file. If you wish, save your newly entered file. (Alternatively, you may type Command \mathbf{S} or select Save File from the File menu.) If using a shared computer, create and name your own folder or save the file on a memory stick.

Interfacing with PAUP:

It is suggested that you create all your data files using MacClade because of the ease of using the data editor. The data matrix can then be opened directly using the program PAUP* (Swofford, 2003), which you will use to find the most parsimonious trees. Use the Save File As option in PAUP to save the trees under a given file name. You may then go back to MacClade to examine the tree(s) that were generated with PAUP, noting character transformations. This iterative approach, using MacClade to enter data, PAUP to generate trees, and then MacClade to examine trees and perhaps to re-code the data, maximizes the value of the two programs.

Plant Systematics Laboratory \#3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS

OBJECTIVES FOR THIS LABORATORY

1. Be able to recognize and name apomorphies for monophyletic taxa.
2. Understand the function and adaptive significance of these apomorphies.
3. Be able to identify and name the major plant groups and their features.

GREEN PLANTS (CHLOROBIONTA)

Chloroplasts \& cell wall

Pull off a young leaf of the aquatic plant flowering Elodea (Hydrocharitaceae) and prepare a "wet mount" by placing in a drop of water on a microscope slide and covering with a cover glass. Observe under a compound microscope. Observe the cells, each having a $\mathbf{1}^{\mathbf{0}}$ cell wall that is composed largely of cellulose. The cellulosic wall in Elodea is thin and appears as a thin whitish line viewed with the light microscope.) Note also the green chloroplasts, which are pushed to the periphery of the cell by a large central vacuole (the membrane of which is usually invisible). The green color is caused by selective absorbance/ reflectance of the major photosynthetic pigments, chlorophyll $\mathbf{a}+\mathbf{b}$. The chloroplasts may be moving in a circular motion, a phenomenon called cytoplasmic streaming or cyclosis. Observe the electron micrographs of chloroplasts, noting the thylakoids (chlorophyll-containing membranes) that are stacked into units called grana. (A cellulosic cell wall and chloroplasts containing chlorophyll b, grana, and starch are major apomorphies for all green plants.) Draw and label a cell, showing the cell wall and chloroplasts.

Oogamy and Antheridia

Observe the available material of the genus Chara or Nitella of the Charales, among the closest relatives of the land plants. Note the plant habit from preserved material. These are small (up to 30 cm tall), erect, fresh water aquatics. Observe the Chara whole mount prepared slides of sexual organs. Observe the spherical, sperm-producing antheridia, which are surrounded by a sterile "jacket" layer of cells. Also note the egg cell, which in Chara is enclosed within a structure called an oogonium (surrounded by noticeable helically-oriented cells). This type of sexual reproduction, in which one gamete (the egg) has become larger and non-motile is called oogamy. The antheridium, oogamy, and retention of the egg cell (e. g., in an oogonium) on the plant body represent major apomorphies for some Chlorobionta, among them the Charales and the land plants. Draw an oogonium (showing the egg and outer helical cells) and an antheridium, showing the sterile jacket layer and internal sperm cells.

Observe the demonstration of the fossil oogonia of Charales, some dating from as far back as the Devonian (345-395 million years ago).

SOME GENERAL ADAPTATIONS OF THE LAND PLANTS

The non-vascular land plants, including mosses, liverworts, and hornworts, share a number of derived features (apomorphies) with the vascular land plants. All of these represent major adaptations to life on land.

Cuticle. Observe the available prepared microscope slides of leaf cross-sections (e. g., Cycas revoluta, a seed plant, which has a particularly thick cuticle). The cuticle appears as a translucent, homogeneous layer covering the outer epidermal cells. What is it composed of? What is its function? Draw, labeling the cell, cell wall, and cuticle.

Antheridium. Observe the microscope slide of the available moss (e.g. Mnium) or liverwort (e.g. Marchantia) antheridium. Draw and label an antheridium, with enclosed sperm cells.

Archegonia. Observe the microscope slide of the available moss or liverwort archegonium. Note the egg cell and nucleus, ventral canal cell, neck, and neck canal cells. Draw and label an archegonium, including neck, neck canal cells, ventral canal cell and egg.

NON-VASCULAR LAND PLANTS ("BRYOPHYTES")

Liverworts (Hepaticae)

Observe the live or preserved material of a thalloid liverwort, such as Marchantia. Virtually all of the material you see here is haploid (n) gametophyte, which in the non-vascular land plants is the dominant, long-lived life cycle phase. In Marchantia the gametophyte is a flat mass of tissue or thallus. On the upper surface look for "gemmae cups," which contain "gemmae." These structures function in vegetative (asexual) reproduction; when a droplet of water falls into the gemmae cup, the gemmae spores may be dispersed some distance away, growing into a genetic clone of the parent. Pores in the upper surface allow for gas exchange. These pores are not true stomata, as they have no regulating guard cells. Also look for antheridiophores and archegoniophores, if present. What do these structures produce? Draw a thalloid liverwort gametophyte, including (if available) gemmae cups and antheridiophores or archegoniophores.

Observe the material of a leafy liverwort. Note the very different appearance of the gametophyte, which consists of a terete axis bearing three rows of leaves (generally two above or dorsal and one below or ventral); these leaves evolved independently from, and are thus not homologous with, those of vascular plants. Draw a leafy liverwort gametophyte in upper (dorsal) and lower (ventral) views, showing the three ranks of leaves.

Observe the prepared slide of a liverwort sporophyte, e. g., Marchantia. Note that the sporophyte is attached to (and nutritionally dependent on) the gametophyte. Also note the numerous spores (each a haploid product of meiosis) and surrounding elaters, specialized structures that hygroscopically aid in spore release. Prepare an outline drawing of the sporophyte and a close-up drawing of some of the spores and elaters.

Stomates

Stomates are derived features for all land plants, with the exception of the Liverworts. It is as yet unclear if stomates evolved once or independently two or more times. Make a wet mount in a drop of water of an epidermal peel of the lower epidermis of available material (e. g., Coleus, Commelina, Graptopetalum, or Zebrina). Observe the stomates (= stomata), containing two guard cells which control the size of the pore (stoma). Stomata are the only epidermal cells with chloroplasts. Draw and label a stomate, noting the two guard cells and stoma.

Mosses (Musci)

The true Mosses are a group of non-vascular land plants that have evolved a diversity of morphological forms. Observe various moss gametophytes, the haploid, green, leafy part of the life cycle. Draw and label a moss gametophyte.

Moss Sporophyte. All land plants have a specialized life cycle phase: the diploid (2n) sporophyte. A young sporophyte attached to the gametophyte is called an embryo, hence the alternate name Embryophyta for the land plants. In the nonvascular land plants ("Bryophytes"), the sporophyte is relatively small, short-lived, and generally non-photosynthetic, being nutritionally dependent on the gametophyte. Observe sporophytes of mosses. These appear as brownish, short to elongate structures that are attached to the leafy, green gametophyte. Sporophytes grow from the fertilized egg (zygote) within the archegonium. The sporophyte terminates in an expanded sporangium (also called a "capsule" in "Bryophytes"), a specialized organ where meiosis occurs, producing spores. Most moss sporangia have teeth-like structures, called peristome teeth, that are hygroscopic, opening and closing depending on atmospheric moisture, effecting spore dispersal in the process. Draw and label a moss sporophyte, showing the seta (stalk), capsule (sporangium), operculum (cap), peristome teeth, and spores. [Optional: observe the capsule longitudinal-section.]

Sphagnum PEAT MOSS. Observe this moss, which grows in wet bogs and chemically modifies its environment by making the surrounding water acidic. If available, make a wet mount of live Sphagnum leaves and observe with the compound microscope. The leaves of Sphagnum are unusual in having two cell types: chlorophyllous cells that form a network around large, clear hyaline cells, the latter having characteristic pores and helical thickenings. The pores of the hyaline cells give Sphagnum remarkable properties of water absorption and retention, making it quite valuable horticulturally in potting mixtures. Observe the sample of peat. Peat is fossilized and partially decomposed Sphagnum, and is mined for use in potting mixtures and as an important fuel source in parts of the world.

Draw and label a portion of a Sphagnum leaf, showing the chlorophyllous cells and hyaline cells, the latter with pores and helical thickenings:

Observe the prepared slide of germinating moss spores, which develop into a filamentous protonema. The protonema represents a ancestral vestige, resembling a filamentous green "alga." It soon grows into a parenchymatous gametophyte. The spores of mosses and basal vascular plants have a thick outer layer called a perine layer, which may constitute an apomorphy for mosses and vascular plants. Also, note the 3-lined structure on the spore wall, called a trilete mark, that is the scar from the junction of the 4 spores after meiosis. Draw and label a spore, showing the trilete mark, a filamentous protonema, and a young gametophyte, if present.

Hornworts (Anthocerotae)

Observe the live, preserved, or whole mounts of a hornwort, e.g., Anthoceros. Note that the gametophytes of hornworts are thalloid, very similar to those of the thalloid liverworts. Draw a hornwort, showing the thalloid gametophyte and the cylindrical sporophyte with a stout foot embedded in the gametophyte and surrounding gametophytic collar.

If available, study the longitudinal-section of a hornwort sporophyte. Draw and label the spores, central columella, and pseudoelaters, the latter functioning in spore dispersal.

Plant Systematics Laboratory \#4 EVOLUTION AND DIVERSITY OF VASCULAR PLANTS

OBJECTIVES

1. To be able to recognize and name (on sight) all taxa listed below in bold type.
2. To be able to recognize and name (on sight) major organs or structural components of these taxa, including knowing all terms listed in bold type.
3. To be able to recognize and know the function of the major apomorphies described.

VASCULAR PLANT APOMORPHIES

Vascular Tissue

1. Observe the demonstration slides of xylem tracheary elements (tracheids or vessels). Note that each cell is a miniature tube. Draw and label.
2. Observe the demonstration slide of phloem sieve elements (sieve cells or sieve tube elements). Note, in sieve tube elements, the sieve plates with aggregates of callose-lined pores. Draw and label.
3. Observe the demonstration slide of fibers. Note that each of the long, tapering cells has a thick, lignified cell wall. Draw and label.
4. If available, observe the demonstration slide of sclereids. Note the pits in the lignified, secondary cell wall. Draw and label.

Shoot and Stem Structure

1. Shoot: Study the prepared slide of a shoot longitudinal section, e.g. Coleus stem tip. Note apical meristem, leaf primordia, and bud primordia. Also note the young vasculature. Check off each of these terms from your textbook.
2. Stem anatomy: Observe the stem cross-section of Lycopodium, (clubmoss), Helianthus (sunflower), or some other vascular plant. Note the epidermis, cortex, pith, and vasculature tissue, consisting of xylem and phloem. Also note fibers, typically outer to the phloem tissue. Check off each of these terms from your textbook.

Sporophytic Leaf Structure

1. Leaf Structural Anatomy: Observe the prepared slide leaf cross-section of Ligustrum. Note upper epidermis, palisade mesophyll, spongy mesophyll, lower epidermis (with stomata), and vascular bundle (vein), with xylem and phloem. The vascular bundle contains phloem below and xylem above (when the slide is correctly oriented). Check off each of these terms from your textbook.

Root Structure and Function

1. Root morphology: Observe the roots growing from the available material, e. g., Eichhornia crassipes, water-hyacinth, or Raphanus sativus, radish. Note root hairs and rootcap.
2. Root development: Look at the prepared slide of a root longitudinal section (e. g., Ranunculus or Elodea root tip). Note the root cap and apical meristem, where a high rate of mitosis occurs. Observe that cells elongate as they mature, until at a later stage cells completely differentiate (mature). Check off each of these terms from your textbook.
3. Root anatomy: Observe a representative root cross-section of a dicot (e. g., Ranunculus older root mature metaxylem). Note the epidermis, cortex (filled with starch grains), endodermis, xylem, and phloem. What is the function of each? Check off each of these terms from your textbook.

DIVERSITY OF NON-SEED VASCULAR PLANTS

The vascular plants differ from "Bryophytes" in having a dominant, photosynthetic, long-lived sporophyte generation. The gametophyte is relatively small and short-lived. Thus, the obvious component of each of the vascular plants below is a diploid sporophyte.

RHYNIOPHYTES

Rhynia. If available, observe the fossilized remains of this plant, one of the earlier vascular plants. These fossil stems are embedded in a rock type called chert, "Rhynie Chert," collected in Aberdeenshire, Scotland. Peruse the references showing photographs and drawings of other representative Rhyniophytes.

LYCOPODIOPHYTA - LYCOPOPHYTES

Lycopodium Club-Moss. Note the general morphology of Lycopodium, commonly known as CLUB-MOSS. It is not, of course, a true moss; how does it differ? Vegetatively, there are numerous spirally arranged leaves, microphylls, covering the photosynthetic stem. Lycopodium has true roots, present in all vascular plants except the Psilophytes. Note the yellowish sporangia on top of the small leaves. These produce numerous spores (which develop into what?). In some species the sporangia are aggregated into a terminal strobilus (cone), consisting of an axis of sporophylls bearing sporangia. Lycopodium spores were once used as flash powder in photography.

Draw and label a Lycopodium shoot, showing the strobilus. Optional: Make an outline drawing of a strobilus longitudinal section, showing the sporophylls and sporangia.
___Selaginella Spike-Moss, Moss-Fern. Selaginella bigelovii BIGELOW'S MOSSFERN. Note the moss-like appearance of this plant, which is actually a vascular plant, native to our region. Stems are rhizomatous to decumbent. The leaves, which are microphylls, are very tiny, spirally arranged, and isomorphic, of one size and shape.

Selaginella apoda. This species differs in being prostrate and in having dimorphic leaves in four rows: two with small, dorsal leaves and two with larger, ventral leaves. Observe the leaf morphology. Draw and label a close-up, showing the four rows of dimorphic microphylls.

Selaginella sporangia. Observe the longitudinal-section of Selaginella, showing microsporangia, with microspores, and megasporangia, with megaspores. Note the vast difference in spore size. What is the evolution of two spore types termed?

Isoetes Quillwort, Merlin's Grass. This genus of lycopods occur in wet areas, e. g., vernal pools in our region. In most species the stem is short and erect, bearing numerous long, thin leaves, which are microphylls. Sporangia are located at the leaf base (upper surface) of some leaves. Draw and label the whole plant.

Fossil Lycopods. Note the fossil specimens of Lepidodendron [=Stigmaria]. These plants were large trees (some taller than 100 feet tall), living approximately 200-300 million years ago. Lepidodendron stems are recognizable in having the remains of diamond-shaped leaf scars covering the surface. Other representative fossil lycopods may include casts, compressions, or coal-ball peels of Sigillaria (stems), Lepidostrobus (cones), and Lepidophlois. Fossil lycopods are of economic importance in being a major contributor to present day coal and oil deposits. Learn to recognize Lepidodendron:

EUPHYLLOPHYTA - EUPHYLLOPHYTES MONILOPHYTA - MONILOPHYTES

EQUISETOPSIDA - HORSETAILS

Equisetum - Equisetaceae. Observe the herbarium sheets and live material of Equisetum, the only extant genus of this group. The Equisetophytes are recognized by 1) the longitudinal ridges on the outer photosynthetic stem; 2) the articulate (jointed), septate nodes; and 3) the whorls of leaves (microphylls) present at these nodes.

Species of Equisetum lacking many lateral branches are called "scouring rushes," after their use in colonial times as a souring brush to, e. g., clean pots and pans. This use is possible because of the presence of considerable silica in the cell walls of the stems. Species of Equisetum with numerous lateral branches (arising from the nodes) are called "Horsetails."

Equisetum hyemale Scouring Rush. Note the rhizomatous underground stem, which often develops into an extensive clonal colony (sometimes encompassing several acres). Also note the whorled leaves (microphylls), forming an encircling sheath by virtue of being laterally fused. Terminal strobili (cones) may be visible on stems.

Equisetum arvense Horsetail. Note that this species differs from the above in having dimorphic stems. The sterile, photosynthetic stems have numerous lateral branches arising at the nodes. The branches actually pierce the base of the sheath-like leaves and give the plant its characteristic "horsetail" appearance. Strobili (cones) are borne at the tips of nonphotosynthetic stems which lack the lateral branches. Draw and label a close-up of the ridged stem, whorled leaves, and (if present) lateral branches.

Equisetum strobilus. Observe the strobilus (cone) of Equisetum. This unique structure consists of a central axis bearing units called sporganiophores. Each sporangiophore is a peltate (umbrella-shaped) structure with a stalk, outer shield (somewhat hexagonal in shape), and several inwardly-curved, longitudinally-dehiscent sporangia. Observe a sporganiophore with sporangia. Open up a sporangium under the dissecting microscope to expose the spores. As they dry, note their amazing movement, caused by hygroscopic elaters attached to the spores that effect spore dispersal. Make a wetmount of the spores and view with the compound microscope. Draw and label the strobilus, sporangiophore, and spore.

Fossil Equisetophytes. During the Carboniferous period and beyond, Equisetophytes were much more common than today and contributed significantly to the biomass of plants. Calamites was a tree Equisetophyte common during this
time. It is a major component of coal deposits. Observe the fossil Calamites, which is recognizable from the longitudinal striations present on this impression of the stem. Other fossil Equisetophytes may include casts, compressions, or coal-ball peels of Calamodendron and Arthropitys. Learn to recognize Calamites.

PSILOTOPSIDA

Ophioglossales - Ophioglossoid Ferns

Observe the specimens of Ophioglossum and Botrychium spp. in the family Ophioglossaceae. What is distinctive about their leaf anatomy? What type of gametophyte and sporangium to they have?

Psilotales - Whisk Ferns

Psilotum nudum Whisk Broom (Psilotaceae). Observe and draw a stem and microphyll of Psilotum. What is the underground portion of the plant? The vascular plants differ from liverworts, hornworts, and mosses in having a dominant, photosynthetic, long-lived sporophyte generation. The gametophyte is relatively small and short-lived. Thus, the material you see is diploid sporophyte.

Draw and label a plant of Psilotum, showing the rhizomes (underground stem), dichotomously branched aerial stem, and microphylls. Also, draw and label a Psilotum synangium, a fusion product of 3 sporangia, and its forked appendage. Optional: Make a wet-mount preparation of the spores and observe with a microscope.

MARATTIOPSIDA - MARATTIOID FERNS

Observe the examples of marattioid ferns, e.g., Angiopteris, Danaea, Marattia. Note that these look like typical "ferns," some being quite large. However, carefully observe the sporangia, located on the abaxial surface of some leaves. These are eusporangia, which develop from several cells and have a sporangial wall which is many cells thick. This is in contrast to the leptosporangia of the Polypodiopsia (below).

POLYPODIOPSIDA - LEPTOSPORANGIATE FERNS

Note the fern sporophyte, the most visible phase of the life cycle. Fern leaves (fronds) bear on their underside sporangia, often grouped together into sori (singlular, sorus). Observe the fiddleheads or croziers (young coiled fern leaves or fronds), exhibiting circinate vernation. These are collected and used as a vegetable (tastes similar to asparagus), particularly popular in parts of China.

Salviniales-Aquatic/Heterosporous Ferns

These are true leptosporangiate ferns but are unusual both in being aquatic and heterosporous (producing both male and female spores, which develop into separate male and female gametophytes). Learn to recognize:
___Marsilea sp. water clover Marsileaceae
Pilularia sp., pillwort Marsileaceae
Salvinia sp. water spangles Salviniaceae
Azolla sp. mosquito fern Salviniaceae [Azollaceae]
If available, observe the endosporic female gametophytes of Marsilea, with gelatinous acrolamellae, in which you may find embedded sperm cells.

Cyatheales

Cyatheaceae Scaly Tree Fern family

Cyathea cooperi Australian Tree Fern Cyatheaceae
Note the very large, bi- to tripinnately compound fronds arising from an erect trunk.

Polypodiales

Aspleniaceae Spleenwort family

Asplenium nidus Bird's Nest Fern Polypodiaceae
Note simple fronds and linear sori and indusia, the latter diagnostic for this family.

Polypodiaceae Polypody family

Polypodium aureum Hare's Foot Fern Polypodiaceae
This illustrates a pinnatifid (=pinnately divided) frond division. Note the round sori, which are exindusiate, characteristic of this family.
Platycerium bifurcatum Staghorn Fern Polypodiaceae Australia, New Guinea
This is an epiphytic fern with dimorphic fronds. Sterile fronds overlap the base and function to trap decaying vegetation.

Fertile fronds are erect and pinnately lobed, with acrostichoid (not aggregated in sori).

Pteridaceae Pteroid Fern family

Adiantum sp. Maidenhair Fern
Note the generally tripinnately compound fronds. The venation of each pinnule is dichotomous. Adiantum has what is called a false indusium, a flap of tissue covering the sori originating from the leaf blade margin.
Pteris sp.
Note the marginal sporangia, with a false indusium.

Plant Systematics Laboratory \#5 EVOLUTION AND DIVERSITY OF WOODY AND SEED PLANTS

OBJECTIVES

1. To be able to recognize and name (on sight) the major apomorphies of the groups described and evaluate their adaptive significance.
2. To be able to recognize and name (on sight) all taxa listed below in bold type.
3. To be able to recognize and name (on sight) the major organs or structural components of these taxa, including knowing all terms listed in bold type.

LIGNOPHYTA (WOODY PLANT) APOMORPHIES

Eustele

Observe the cross-section of a young stem (before wood formation) of a seed plant. Note the eustele, a single ring of vascular bundles, each bundle consisting of an inner group of xylem tracherary elements and an outer group of phloem sieve elements.

Observe a eustele, identifying and labeling vascular bundles, xylem, phloem, cortex, pith, and epidermis. Note, at higher magnification, one of the vascular bundles, illustrating a few tracheary elements of the xylem, sieve elements of the phloem, and fibers (if present). Check off these terms from the illustrations in your book.

Wood

Study the slide of a young woody stem cross-section. Note the incipient vascular cambium, consisting of specialized cells that divide and form secondary tissue. Check off the terms from the illustrations in your book: primary xylem, primary phloem, vascular bundle, vascular cambium, cortex, and pith.

Study the slide of an older woody stem cross-section. Observe the vascular cambium, which has deposited layers of secondary phloem to the outside and secondary xylem (wood) to the inside. Note the annual rings of wood, each layer corresponding to one year's growth, and the rays which traverse the secondary tissue. Also note the formation of a periderm, from the cork cambium at the stem periphery. Check off the terms from the illustrations in your book: secondary xylem, secondary phloem, vascular cambium, cortex, pith, and periderm.

Observe the demonstration slide of a close-up of the junction between one annual ring and the next. The rings are caused by the fact that the tracheary elements at the beginning of a growth season are larger and thinner walled, constituting the spring wood; those at the end of the season are smaller and thicker walled, constituting the summer wood. Draw a few cells of each annual ring (at their junction) and label which is the spring wood and which summer wood.

Observe the wood samples on demonstration. Note the rays, tracheary elements (tracheids or vessels), and annual rings. What is the adaptive significance of wood? Note also the difference in thickness of the annual rings. What might these differences reflect? How can scientists use this data? What is this science called?

DIVERSITY OF NON-SEED WOODY PLANTS

Observe the available material or illustrations of the fossil plant Archeopteris (not to be confused with the very famous, ancient reptilian bird, Archeopteryx), a non-seed Lignophyte. Archeopteris was a large tree, with wood like a conifer but leaves like a fern. Sporangia born on fertile branch systems produced spores.

SPERMATOPHYTA (SEED PLANT) APOMORPHIES

The Seed

Observe an ovule (immature seed, prior to fertilization and embryo development) from the available material. Prepare a longitudinal section of an ovule or observe the demonstration material. Note the outer seed coat and the inner tissue of the female gametophyte.

Observe the prepared slides of ovules with a dissecting and compound microscope. Note the outer seed coat, if present. Observe the megasporangium (nucellus), having a distal pollination chamber. Look closely here for male gametophytes: pollen grains with pollen tubes. Note the massive tissue of the female gametophyte. Look for the archegonia at the distal end of the female gametophyte. Draw and label the prepared slide of a seed, noting the above components.

Observe the parts of a seed, from a Cycad, Ginkgo, or Conifer. What different functions does the seed have in all these taxa?

If available, dissect a "pine nut" (Pignolia), which is the edible seed of a species of pine (Pinus pinea) minus the outer seed coat. Carefully split open (with fingernails or razor blade) the outer, whitish female gametophyte tissue to reveal the
central, longitudinally-oriented embryo. With care, you can remove or expose the embryo intact. Observe the radical (attached to long, stringy suspensor cells), cotyledons (3-18 in Pine), and epicotyl (observed by removing some cotyledons). Draw and label the dissected Pine seed, noting the above components.

Observe the prepared slide of a seed longitudinal section, noting the female gametophyte and embryo parts described above. Draw.

DIVERSITY OF SEED PLANTS

Fossil "Seed ferns"

Observe the available material of the fossil seed ferns. "Seed ferns" are a paraphyletic (non-natural) group of fossil plants that had fern-like foliage, yet bore seeds. Medullosa is one example of a seed fern; note the fossil stems. As in many fossil plants, different organs of Medullosa are placed in separate "form genera." For example, the fern-like leaves of Medullosa are in the form genera Alethopteris and Neuropteris. Dolerotheca (having huge pollen grains) refers to the pollenbearing organs of Medullosa. Also note the fossil seed Pachytesta; both longitudinal and cross-sections are on display.

Cycads (Cycadales)

Cycads are a relatively ancient group of plants, now fairly restricted in distribution. None are native to our area, although many, especially Cycas circinalis, are planted horticulturally. Observe the potted specimens of cycads on display. Note the generally short, erect stem, lacking axillary branching (a possible apomorphy for the group). Stems bear spirally arranged, coriaceous (leathery), pinnately compound leaves (bipinnately compound in the tropical Australian Bowenia). Note that immature leaves have circinate vernation.

Note the available reproductive material. All cycads are dioecious, either male or female. Each male cone (strobilus) has a central axis bearing microsporophylls, which bear microsporangia on the abaxial surface. The microsporangia form microspores, which develop into pollen grains. Draw and label a male cycad cone plus a close-up of a microsporophyll with microsporangia.

Note female cones (strobili) with megasporophylls, each bearing two seeds. The genus Cycas itself is the only cycad that lacks cones, having large megasporophylls bearing several seeds. Draw and label a female cycad cone and/or Cycas megasporophyll plus a close-up of a megasporophyll with attached ovules or seeds. (If suitable material is available, try to observe motile (flagellate) sperm within cycad seeds.)

Cycas (e. Africa to Japan \& Australia) C. revoluta Sago-Palm commonly planted as outdoor ornamental; this species and others are a source of sago from pith (probably carcinogenic), used for flour \& bread in India; C. media, seeds boiled, eaten by Australian Aborigines

Dioon (Mexico \& Central America) D. spinulosa; D. edule (Mexico) has edible seeds
Encephalartos (trop. to s. Africa) Cultivated ornamental; stems a source of sago (starchy food)
Macrozamia (Australia) Cultivated ornamental; seeds edible (e. g., Queensland Nut)
Zamia (trop. \& warm Americas) Cultivated ornamental; starch sources (toxic until boiled)
Microcycas (Cuba) Monotypic (M. calocoma), endemic to Cuba, almost extinct; mis-named, as it tallest cycad, approaching palms in height (see photograph).

Ginkgo (Ginkgoales)

Observe the live and/or herbarium material of Gingko biloba. Ginkgo is native only to certain remote regions of China but has now been planted worldwide as a popular street tree. Note the short shoots (in addition to long shoots) and the distinctive obtriangular, apically 2-lobed leaves with dichotomous venation. Ginkgo, like the Cycads, is dioecious and has motile (flagellate) sperm that arise from the pollen grain after pollination.

Draw, label, and learn to recognize a Ginkgo leaf and short shoot.

Conifers (Coniferales)

Pinaceae PINE FAMILY. Observe a pine branch. Note that the leaves of the main branch, the long shoot, are small, brownish, and often non-photosynthetic scale leaves. In the axil of each scale leaf occurs a modified lateral branch, known as a short shoot or fascicle. Each short-shoot or fascicle consists of stem tissue, one or more needle-shaped leaves, and persistent bud scales. Remember that the fascicle is a shoot system and will arise from an bud in the axil of a scale leaf. Draw and label a pine fascicle.

Note the male cones of a pine, consisting of microsporophylls bearing microsporangia (little yellow sacs where pollen grains are produced). Draw and label a male cone and a close-up of a microsporophyll with microsporangia. If available, observe the male cone longitudinal-section and draw the same structures.

Make a wet-mount of some pollen grains of pine and observe with a compound microscope. Draw and label a single pollen grains, noting the saccate morphology (appearing as a "mickey mouse" shape). What is the possible function of the saccate pollen grain morphology?

Female cones are determinate shoots consisting of a stem axis which bears ovuliferous scales, each ovuliferous scale subtended by a bract. The bracts are generally small but can get large, e.g., in Pseudotsuga (DOUGLAS-FIR). Each ovuliferous scale bears two ovules (which, of course, develop into two seeds) on its adaxial surface. Ovuliferous scales evolved from much more elaborate lateral branch systems, which became fused and flattened; this fertile shoot system constitutes a synapomorphy with the Ginkgoales. Pine seeds are often winged. When the female cones are closed, the outer exposed surface of the ovuliferous scale is called an apophysis; a raised portion of the apophysis is known as an umbo. The umbo often ends in a prickle. Note first year cones, second year cones, and mature cones that have released the seeds already.

Observe the prepared slide of a pine female cone, noting ovule, ovuliferous scale, and bract. Draw and label.
Pinaceae. Pine family. Draw and label parts of one female cone of a representative members:
Pinus spp. Pines. Note the representative species of pines, including P. canariensis, P. coulteri, P. jeffreyi, P. monophylla, and P. torreyana. Note the species differences in the number, shape, and size of the leaves of the fascicle and differences in female cone morphology.
Abies sp. Fir. Note the petiolate to subsessile, linear leaves of the Fir tree. The cones of Fir are erect.
Picea sp. Spruce. Note the petiolate, linear leaves, which leave behind a characteristic peg-like leaf-scar.
Pseudotsuga sp. Douglas-Fir. Note the petiolate, linear leaves. The female cones are pendant (hang down) and have elongate, trifid bracts.
Cupressaceae Cypress family (including Taxodiaceae). Members of this family have characteristic small, triangular (awl-shaped) leaves, which are often (though not always) decussate and closely appressed to the stem.

Calocedrus decurrens [Libocedrus decurrens] Incense-Cedar. A large tree of high altitude, coniferous forests (e.g., Cuyamaca, Laguna Mts. of S.D. Co.). Note that the minute, decussate leaves are decurrent along the highly branched and flattened stems.
Chamaecyparis thyoides White Cedar, eastern U.S.
Cupressus forbesii Tecate-Cypress Note the minute leaves and highly branched shoots of this somewhat rare species. The female cones are spherical with tightly closed ovuliferous scales bearing a raised umbo.
Cupressus sempervirens var. stricta Italian-Cypress This commonly cultivated tree is tall and very narrow.
Juniperus californica California Juniper. The junipers differ from the cypresses in having succulent, "berry-like" female cones, caused by a thickening and fusion of the ovuliferous scales.

Metasequoia glyptostroboides Dawn Redwood
 Sequoia sempervirens Redwood

Sequoiadendron giganteum Giant Sequoia
Taxodium distichum Bald-Cypress
Taxodium mucronatum Montezuma-Cypress
Thuja occidentalis Eastern White Cedar, T. plicata Western Cedar. This genus can be recognized in part by the flattened branch systems.
Araucariaceae. Members of this family are found in parts of South America, Australia, Oceania, and s.e. Asia.
Araucaria bidwillii Bunya-Bunya, n. e. Australia
Araucaria heterophylla Norfolk Island-Pine, Norfolk I., Australia
Podocarpaceae. Members of this family have very reduced female cones, appearing as a single seed.
Agathis sp.
Podocarpus gracilior East African Fern Pine (tropical Africa)
Podocarpus macrophyllus Japanese Yew Pine (Japan)

Gnetales

Ephedra sp. MORMON-TEA. Ephedra can be recognized by the photosynthetic, striate (longitudinally ridged) stems and the very reduced scale-like leaves, only 2 or 3 per node. (NOTE: Don't confuse with Equisetum; study the differences.) Male or female cones may be found in the axils of the leaves. Draw and learn to recognize.

Welwitschia mirabilis WELWITSCHIA. Observe the live or preserved material (if available) and photographs of this weird plant native to deserts of Namibia (southwestern Africa). An underground caudex bears only two leaves, these becoming quite long and lacerated in old individuals. Male and female cones are born on axes arising from the apex of the caudex. Draw and learn to recognize.

Gnetum. This plant is a tropical vine with opposite, simple leaves, looking all the world like an angiosperm but, of course, lacking true flowers. Observe photographs.

Plant Systematics Laboratory \#6 EVOLUTION OF FLOWERING PLANTS

OBJECTIVES

1. To be able to recognize and name (on sight) the major apomorphies of the angiosperms and evaluate their adaptive significance.
2. To be able to recognize and name (on sight) the major organs or structural components of these taxa, including knowing all terms listed in bold type.

FLOWERING PLANT APOMORPHIES

Flower

Dissect a flower from the material available. Note the basic floral parts: a perianth, composed of a calyx of one or more sepals and a corolla or one or more petals; an androecium, composed of one or more stamens, each with an anther and filament, the latter of which may be absent; and a gynoecium composed of one or more pistils, each with an ovary, one or more styles (which may be absent) and one or more stigmas. Draw the whole flower and label the parts.

Observe the demonstration slide of early flower development in longitudinal-section. Note the resemblance between the determinate flower shoot and a vegetative shoot.

Observe the demonstration slide of a flower in cross-section. Draw, noting the perianth, stamens (with pollen inside), ovary, carpels, and ovules.

Anther

Remove a single anther from flowers of different stages (before and after pollen release) and observe under high magnification. Note the two anther halves, each half called a theca (plural, thecae). Section a very young anther or observe the microscope slides and note the two microsporangia per theca. Draw and label. At dehiscence these microsporangia fuse into a single anther locule.

Reduced Male Gametophyte

Observe an Angiosperm pollen grain from either a prepared slide or a wet mount (stained with acetocarmine or toluidine blue). Note the tube cell nucleus and generative cell (which later divides into two sperm cells). Draw and label.

Observe the prepared slides of Angiosperm pollen germination. Note the pollen tube, generative cell, and tube nucleus. In some, the generative cell may have divided to form the two sperm cells? Draw and label.

Carpel

If material is available, observe the gynoecium of a species that is apocarpous (carpels unfused) and of a species that is syncarpous (carpels fused).

Draw and label the pistils of the apocarpous species (if available), showing ovary, style, and stigma.
Observe the prepared slide of a flower longitudinal-section. Note the basic parts of the flower. In the ovary, observe locule(s), ovules, and placentae. Draw and label the latter.

If available, observe stages of fruit development. Note how an ovary can drastically change shape and increase in size as it matures into a fruit. Draw. What is the adaptive significance of a fruit?

Reduced Female Gametophyte

Observe under the dissecting scope the ovary cross sections of Lilium or Fritillaria. Make an outline drawing, showing ovary wall, locules, and ovules. Note the two linear rows of ovules per carpel.

Observe Lilium or Fritillariaovules with a "compound" microscope. Observe a single ovule in mid-sagittal view, showing the funiculus, inner integument, outer integument, micropyle, and megasporangium (nucellus). Observe a mature female gametophyte of Lilium or Fritillaria, noting the three antipodal cells, two polar nuclei, and 3 cells of the "egg apparatus" (egg and 2 synergids). Draw and label.

If time permits, observe earlier developmental stages of Lilium or Fritillariaovule development.

Endosperm

Observe the demonstration of a prepared slide of an angiosperm seed (e. g., Capsella bursa-pastoris Shephard's Purse, Brassicaceae). Observe the endosperm encasing the embryo, both surrounded by a seed coat. Note the parts of the embryo: radical, hypocotyl, epicotyl, cotyledons. How many cotyledons are there? Draw and label.

Plant Systematics Laboratory \#7 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: AMBORELLALES, NYMPHAEALES, AUSTROBAILEYALES, MAGNOLIIDS, CERATOPHYLLALES, AND MONOCOTS

The main objective is to learn to identify a given plant to plant family. Recognizing the family of an unknown angiosperm can be quite helpful in ultimately identifying it using a taxonomic key or specimen comparison.
Another objective is to learn to use descriptive morphological terminology. A final objective is to learn the names of one or more exemplars of a given plant family.

The following include character sheets to be used for observing the characteristics of specific families of flowering plants. For each family, determine the character states of the characters listed and fill out the floral formula. Make a drawing of at least one plant family exemplar.

Learn to recognize and know scientific name of EXEMPLARS in bold. For EXEMPALRS marked "*", be able to recognize scientific name, and know common name, family, and plant use/part used.

NYMPHAEALES

Nymphaeaceae-Water-Lily family (Nymphe, a water nymph). 6 genera / 60 species.
If possible, study the rootstock (underground/underwater stem) of a water-lily. Take a single flower and pull off a single part, working from the outer perianth parts to the innermost stamens. Lay these out and observe the transition between perianth and stamens. Draw or photograph outer, middle, and inner perianth parts and outer, middle, and inner stamens.

Make a flower longitudinal section. Draw and observe the ovary position.
Make an ovary cross section. Draw the placentation.
Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.)
EXEMPLARS:
Nymphaea sp.
Water-Lily
Nymphaeaceae
cult. orn.

MAGNOLIIDS

LAURALES

Lauraceae-Laurel family (L. laurus, laurel or bay). 45 genera / 2200 species.
Crush a leaf and smell the aromatic oils. If feasible, make a leaf cross-section and note the oil glands.
Observe the perianth cycly. Pull off 1-2 stamens from the base and draw carefully. Note any basal nectaries. Note and draw the anther dehiscence. Are any staminodes present?
Draw the pistil. Try to make a longitudinal section of the ovary and note the placentation. Draw.
If fruits are available, carefully make section to note the fruit type. Is there an enlarged receptacular region? Draw.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.)

EXEMPLARS:

Laurus nobilis* Laurel, Bay Lauraceae Mediterranean region herb flavoring
Umbellularia californica Calif. Laurel, Bay Lauraceae nw U.S., California herb flavoring

MAGNOLIALES

Annonaceae-Custard-Apple family (Anona, a Haitian name). 112 genera / 2150 species.
Carefully note and draw the leaf arrangement.
From a flower sample, note the perianth cycly and merosity.
Make a flower longitudinal section. Remove one or more stamens (draw) and note the carpels and
placentation (draw).
If available, section a seed and note the ruminate endosperm (draw).
Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.)

EXEMPLARS:
Annona cherimola* Cherimoya, Custard-Apple Annonaceae Andes, Peru \& Ecuador fruit tree Magnoliaceae-Magnolia family (after Pierre Magnol of Monpelier, 1638-1715). 7 genera/200 species.

Note the stipulate leaves; the stipules encircle the stem, leaving an encircling stipule scar (draw).
Pull off one perianth part, from outside to inside, and compare. Draw. What is the perianth arrangement?
Note the distinctive elongate receptacular axis. Note the spiral arrangement of stamens and pistils. Pull off a stamen and draw. Pull off a carpel, section sagittally (dividing it into two mirror image halves). Note the placentation; draw.

If fruits are available, note the fruit type and the seeds, with sarcotesta.
Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:
Magnolia grandiflora Flowering Magnolia Magnoliacae s.e. United States cult. orn.
Michelia doltsopa
Magnoliacae
cult. orn.

PIPERALES

Aristolochiaceae - Birthwort family (Gr. aristos, best + lochia, childbirth, from resemblance of a species of Aristolochia to the correct fetal position). 7 genera / 410 species.

Note the plant habit. Draw a leaf, showing its attachment and arrangement.
Draw one of the weird flowers. Note that the great bulk of the perianth is interpreted as a calyx.
Make a longitudinal section of a flower and draw, showing the androecium and gynoecium.
Draw a close-up of the gynostemium, a fusion product of androecium and gynoecium.
Make a longitudinal and cross section of an ovary (appearing like a pedicel. What is the ovary position?
placentation type?
Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:
Aristolochia gigantea Birthwort, Dutchman's Pipe Cultivated ornamental
Aristolochia grandiflorum Birthwort, Dutchman's Pipe Cultivated ornamental
Piperaceae-Pepper family (piper, Indian name for pepper). 14 genera/1940 species.
Note the stem habit. Make a stem cross-section and note the "stelar" type.
Make a cross section of the inflorescence and note the fleshy axis. What is the inflorescence type?
From several cross sections or side views of the inflorescence, note the flower structure. Can you identify what a flower is? Remove and draw each flower part. Are the flowers bisexual or unisexual? The If available, section a fruit and note the fruit type. Draw.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:

Peperomia
*Piper methysticum
*Piper nigrum

Peperomia	
Kava	
Black Pepper \quad India	

Culivated ornamental
Source of kava kava, tea/mild euphoric
Source of black and white pepper

MONOCOTS

MONOCOT APOMORPHIES

Atactostele

Observe the prepared slide of a monocot stem (e. g., Zea mays, CORN, Poaceae). Note the atactostele, consisting of scattered vascular bundles, lacking a vascular cambium. Make an outline drawing of the atactostele. Draw and label (below) a close-up of a single vascular bundle, illustrating cells of the xylem tracheary elements (vessels), phloem sieve elements (sieve tube members), and fibers (phloem bundle fibers).

Parallel or penni-parallel leaf venation

Observe the examples of monocot leaves, having parallel or penni-parallel venation. Draw and label (below) a close-up of the smallest veins, showing the transverse veins connecting two or more major parallel veins. Compare the monocot with a typical non-Monocot Angiospermous leaf, which has reticulate venation.

One Cotyledon

Observe the prepared slide of a typical monocot seed in section. Note the single cotyledon. Draw and label (below).

MONOCOTS

ALISMATALES

Alismataceae-Water-Plantain family (Alisma, a name used by Dioscorides for a plantain-leaved aquatic plant).
11 genera/ca. 80 species.
Draw a leaf, noting the leaf attachment.
Draw a whole flower in face view. What is the perianth cycly?
Note the gynoecium. What is the gynoecial fusion? Remove a stamen and carpel and draw close-up.
Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.)
EXEMPLARS:
Sagittaria sp. Arrowleaf Cultivated ornamental
Araceae - Arum family (Arum, a name used by Theophrastus). 104 genera/ca. 3300 species.
Note the habit and leaf morphology of various examples of the Araceae. What is the inflorescence type?
Draw. Determine the flower sex and dissect and draw one or more flowers, noting all the parts.
Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.)
EXEMPLARS:

Caladium sp.	Caladium		cultivated ornamental
Colocasia esculenta*	Cocoyam, Taro	trop. Asia	Ornamental, food source in tropics
Dieffenbachia sp.	Dumb-cane	trop. America	Ornamental houseplant; poisonous
Monstera deliciosa	Monstera	trop. America	Ornamental (spathe white)
Philodendron selloum	Philodendron	trop. America	Cultivated ornamental
Xanthosoma sagittifolium	Yautia, Malanga	W. Indies, S. Am.	cult. orn.; rhizome food source
Zantedeschia aethiopica	Calla Lily	S. Africa	cultivated ornamental
Lemna sp.	Duckmeal		Ecologically important
Wolffia sp.	Watermeal		Ecologically important

ASPARAGALES

Apomorphy: Note exemplar seeds with black phytomelan in seed coats

Agavaceae-Agave family (after Agave, meaning "admired one"). Ca. $8(-12+$) genera/300+ species.
Note the plant habit and leaf morphology of typical members of the Agavaceae. Scrap a leaf lengthwise on both sides with a stout blade and note the fibrovascular bundles that remain. Study a flower and note the perianth cycly and ovary position, the latter variable in the family. Draw a flower and an ovary cross section, noting the placentation.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.)
EXEMPLARS:
Agave sp. Century Plant cultivated ornamental
Yucca gloriosa Spanish Dagger U.S.: N. Car. - FL. cultivated ornamental
Alliaceae-Onion family (Latin name for garlic). 13 genera/ca. 600 species.
Dig up the rootstock of members of this family and make a longitudinal section, noting the stem type. Note the characteristic "alliaceous" odor. Draw the inflorescence, which is characteristic of the family. Note the flower perianth cycly and ovary position. Draw a flower, stamen, and ovary, whole and in cross section.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.)

Onion
Garlic Society-Garlic

Mediterranean region bulb edible
Mediterranean region bulb edible cultivated ornamental

MONOCOTS

ASPARAGALES (continued)

Amaryllidaceae-Amaryllis family (Latin name for a country girl). 59 genera / 850 species.
Compare members of this family with the Alliaceae, with which it is closely related. How are they similar in underground stem type, inflorescence type, and perianth cycly? How do they differ in odor and ovary position? Draw a flower, including an ovary cross section, noting the placentation.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:
Amaryllis sp. Amaryllis cultivated ornamental
Clivia miniata
Hymenocallis sp.

S. African Lily South Africa Spider Lily

cultivated ornamental cultivated ornamental

Asphodelaceae-Asphodel or Aloe family. 15 genera / 780 species.
This family is characterized by the leaf texture. Cut a leaf and note the succulent storage tissue. If feasible, section and note the anatomical features. Observe the inflorescence type and flower morphology. Draw a flower, showing the perianth cycly, stamens, and ovary. Make a cross section to note the placentation. If available, study the fruits and seeds, the latter having characteristic arils. Draw.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:
Alöe spp. Aloe South Africa

Bulbine spp. Bulbine
Gasteria spp. Gasteria
Haworthia spp.

Aloe	South Africa
Bulbine	South Africa
Gasteria	South Africa
Haworthia	South Africa

cultivated ornamental cultivated ornamental cultivated ornamental cultivated ornamental

ASPARAGALES

Iridaceae-Iris family (after Iris, mythical goddess of the rainbow). 70 genera/1750 species.
Note the underground stem type. Remove a leaf from the point of attachment to the stem. Note the sheathing base. Make a cross section of the leaf at this basal, sheathing region and two other sections $1 / 3$ and $2 / 3$ the distance from the base. Draw these sectional outlines. What is this leaf structural type called?

Note the inflorescence type of exemplars. How does it vary within the family?
Draw a single flower. How many stamens are there? What is the characteristic stamen position? If you are studying Iris or close relatives, what is distinctive about the styles/stigmas? Finally, what is the ovary position? Make an ovary cross section to note the placentation type. Draw.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:
Chasmanthe aethiopica South Africa cultivated ornamental
Dietes spp. African Iris \quad cultivated ornamental Africa
Iris spp. Iris cultivated ornamental

Sisyrhinchium spp. Iris California native

ASPARAGALES

Orchidaceae-Orchid family (orchis, testicle, from the shape of the root tubers). 700-800 genera / ca. 20,000 species.

If available, note epiphytic members of the orchid family. What is the specialized root type? The flowers require special and detailed study. Note first that, with few exceptions, the flowers are resupinate, twisted 180°. Draw a flower in face view. Note the perianth symmetry and cycly. What is the inner, anterior tepal called? Note the central column (gynostegium, gynostemium), a fusion product of androecium and gynoecium. Locate the specialized anther. Draw a pollinarium, pollinium, and viscidium. Can you locate an operculum? rostellum? Where is the stigma? Finally, observe the inferior ovary, often appearing as a pedicel. Make an ovary cross section and note the distinctive placentation. Draw.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:
Calodendrum sp.
Dendrobium sp.
Encyclia / Epidendrum sp.
Vanilla planifolia*
Vanilla C., S. Am.
cultivated ornamental cultivated ornamental cultivated ornamental capsules used as flavoring

MONOCOTS: COMMELINIDS

ARECALES

Arecaceae (Palmae)—Palm family (from areca, Portuguese for the betel palm). ca. 190 genera / 2000 spp .
Observe several palm plants, noting the (typically) single trunk and acrocaulis leaves. Note the inflorescence position, whether infrafoliar, interfoliar, or suprafoliar. Also note leaf type and posture.

Note the inflorescence type and observe and draw a whole flower. Note perianth cycly, stamen number, and ovary position. From an ovary cross or longitudinal section, note and draw the placentation.

Section a fruit and note the fruit type. Draw.
Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:
Archontophoenix cunninghamiana King Palm Queensl., N.S.W., Austr. cultivated ornamental

Areca catechu*
Calamus sp.*
Caryota sp. (e.g., C. mitis)
Chamaedorea costaricana
Chamaerops humilis
Cocos nucifera*
Copernicia cerifera*
Elaeis guineensis*
Phoenix canariensis
Phoenix dactylifera*
Syagrus romanzoffiana
Washingtonia robusta

King Palm	Queensl., N.S.W., Austr.	cultivated ornamental
Betel-Nut Palm	Trop. Asia (cultigen)	Stimulatory/med. seeds
Rattan Palm	Old World tropics	Stems-furniture, baskets
Fishtail Palm	S. E. Asia	cultivated ornamental
Palm	Costa Rica	cultivated ornamental
Mediterr. Palm	Mediterranean region	cultivated ornamental
Coconut Palm	Pan-tropical	Edible seed; husk (coir)
Carnauba Palm	n.e. Brazil	Leaves - wax
Oil Palm	W. Africa	Pericarp/seeds - oil
Canary Is. Palm	Canary Islands	cultivated ornamental
Date Palm	w. Asia \& n. Africa	Edible pericarp
Queen Palm	c. Brazil to Argentina	cultivated ornamental
Mex. Fan Palm	Mexico in Son. \& B.C.	cultivated ornamental

COMMELINALES

Haemodoraceae-Bloodwort family (Gr. haimo, blood, in reference to red pigmentation in roots and rootstocks of some members). 13 genera / 100 species.

Note the plant habit, underground stem type and leaf structural type. Draw the dendritic trichomes.
Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.)
EXEMPLAR:
Anigozanthos sp. Kangaroo Paw s.w. Australia cultivated ornamental

Pontederiaceae- Pickerel-Weed family (for Buillo Pontedera, 1688-1757). 7 genera / 31 species.
Note the plant babit and plant habitat. All members of this family are aquatics. In Eichhornia crassipes (water-hyacinth), note the swollen, spongy petiole bases, functioning in floatation. Also note the adventitious roots with prominent root caps. If flowers are available, fill out a family sheet.
EXEMPLARS:
Eichhornia crassipes
Pontederia sp.

Water-Hyacinth
Pickerel-Weed
S. Am.
cultivated ornamental; weed cultivated ornamental

ZINGIBERALES

Note the general characteristics (some of which are apomorphic) of this order: 1) leaves penni-parallel; 2) supervolute ptyxis, in which each half of the blade is rolled, one within the other; 3) diaphragmed air chambers in petioles; 4) ovary inferior. The general floral formula is: $\mathbf{P} 3+3$ A 1-6 G (3), inferior

Key to the eight families of the Zingiberales

Fertile stamens 5-6

Lvs. spiral, flowers unisexual (plants monoecious) . Musaceae
Lvs. distichous, flowers perfect
Lower median tepal of inner whorl a large labellum; style widened into three stigmatic lobesLowiaceae Lower median tepal of inner whorl not larger than others; style not widened into three stigmatic lobes

Fruit a schizocarp; seeds 1 per carpel, exarillate . Heliconiaceae
Fruit a loculicidal capsule; seeds several per carpel, arillate . Strelitziaceae
Fertile stamen 1, staminodes 4, petaloid
Anterior staminodes connate; fertile stamen not petaloid, fertile anther bithecal Leaves distichous; labellum derived from connation of two inner staminodes Zingiberaceae Leaves spiral; labellum derived from connation of five petaloid staminodes . . .Costaceae

Anterior staminodes distinct; fertile stamen petaloid, fertile anther monothecal Ovules several per carpel; seeds without aril .Cannaceae
Ovules one per carpel; seeds arillate Marantaceae

ZINGIBERALES (continued)

Musaceae-Banana family (after Antonia Musa, physician to Emporer Augustus 63-14 BC). 3 genera (Ensete, Musa, and Musella) / ca. 40 species.

Note the plant habit, an herb with overlapping leaf sheaths that form a "pseudotrunk". What is the leaf arrangement? Note the penni-parallel venation and the diaphragmed air chambers in the petioles (Draw). If possible, dissect the leaves from an erect shoot and observe, at ground level, the apical meristem with leaf primordia.

Observe and dissect the female and male flowers. Draw each. What is the plant sex? What is the fruit type? Draw a floral diagram and fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.)
EXEMPLARS:
Ensete ventricosum
Musa textilis*
Musa acuminata
Musa xparadisiaca

Abyssinian banana	Ethiopia	cultivated ornamental
Manila-Hemp, Abacá	Phillipines	fiber source Banana
food source		
Banana	India	food source

Strelitziaceae - Bird-of-paradise family (after Charlotte of Mecklenburg-Strelitz, wife of King George III). 3 genera (Phenakospermum, Ravenala, Strelitzia) / 7 species.

Note the leaf morphology and its penni-parallel venation. How does the leaf arrangement differ from the Musaceae? With one inflorescence, make a cross-section of the flowers and note their zig-zag arrangement, forming a monochasial cyme. Draw. Pull off a complete flower of another inflorescence and drawit. Note the three outer tepals and three inner tepals, in the latter of which the two anterior tepals are connate. Note the protruding stigma; gently pull this up to separate it from the androecium. What is the stamen number, fusion, and dehiscence? Make an ovary cross-section and draw.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:
Ravenala madagascariensis Traveler's-Palm Madagascar cultivated ornamental
Strelitzia nicolai
Strelitzia reginae

Giant Bird-of-Paradise Bird-of-Paradise

South Africa
South Africa
cultivated ornamental cultivated ornamental

Cannaceae- Canna-Lily family (Gr. canna, a reed). 1 genus (Canna) / 10-25 species.
Note the leaf arrangment. Find and carefully remove the outer tepals and inner tepals. Lay these in a row on the table, noting the difference in their morphology. Pull off the showy, petaloid staminodes and stamen, from outside to inside, and also lay out in the row of tepals. Carefully observe the single, fertile stamen. Draw a closeup of the anther. Note that it is monothecal. Draw the unusually shaped style. Finally, note the ovary position. Make an ovary cross-section and draw. If fruits are available, draw these.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:
Canna edulis Queensland Arrowroot Australia rhizome-easily digestible starch
Canna Xgeneralis
Canna, Arrowroot
S. Am.
cultivated ornamental
Zingiberaceae- Ginger family (from a pre-Gr. name, possibly from India). 50 genera / ca. 1,300 species.
Note the leaf venation and arrangment of an exemplar species. Pull off a complete flower and draw it in oblique view. Carefully note the outer tepals and inner tepals. What are the showy portions of the flower? Note the single stamen and its position. Note that the style traverses between the anther thecae. What is the ovary position? Draw a floral diagram.

Fill out a family sheet. (Note: Answer characters in bold first, then answer others as time permits.) EXEMPLARS:

Alpinia speciosa
Curcuma longa*
Elettaria cardamomum*
Hedychium flavescens
Hedychium flavum
Hedychium gardnerianum
Zingiber officinale*

Shell-Ginger Turmeric India?
Cardamom India
Yellow-Ginger India
India
India
trop. S.E. Asia
cultivated ornamental rhizome-spice, in curry powder seeds used as spice cultivated ornamental cultivated ornamental cultivated ornamental rhizome used as spice

POALES

Bromeliaceae - Bromeliad family (after Swedish medical doctor and botanist, O. Bromell, 1639-1705). 59 genera / 2,400 species.

Note the trichome cover of various bromeliad species. The trichomes function to absorb water from the atmosphere and water and mineral nutrients from runoff and also function in photoreflectance, perhaps in protecting the plant from UV radiation. Scrape off some trichomes from the surface of a leaf into a drop of water or 50% glycerol on a microscope slide and cover with a cover slip. Observe under a high powered compound microscope. Draw, noting the details of the wall structure.

Note the general morphology of different types of bromeliads. Many bromeliads are epiphytic, some are "tank" species, in which the sheathing leaf bases form a catchment for rain water and detritus (and sometimes a home for animals). If available, examine closely the sympodial growth form of Tillandsia usneoides, Spanishmoss. Carefully draw a shoot, noting the sympodial units.

Dissect a flower and fill out a family sheet. Note the ovary position, which varies from superior to inferior. Notice if scales are present at the base of the perianth, and note the characteristic twisted style/stigma. Also note the fruit type (if available), usually a berry (sorosis in Ananas comosus) or a capsule, the latter with winged or plumose-crowned (comose) seeds.
EXEMPLARS: (Classification of subfamilies after Givnish et al. 2005)
Subfamily Bromelioideae [Some epiphytic, lvs. usu. spinose-serrate, G inferior, fr. berry, seeds w/o append.] Aechmea (tank bromeliad)
Ananas comosus* Pineapple seedless cultigen, derived from native S. Am. sp.; fruit sorosis
Billbergia
Brocchinia
lvs. flat; inflor. often pendant; fls. lax
Bromelia
Canistrum infl. head-like; bracts spiral, colorful
Cryptanthus
Neoregelia lvs. forming "tank;" infl. head-like, from center of rosette
Nidularium
lvs. forming "tank;" infl. head-like, from center of rosette
Subfamily Hechtioideae [Usu. terrestrial, G superior, fr. capsule, seeds winged]
Hechtia lf. margin spinose-serrate
Subfamily Pitcairnioideae [Usu. terrestrial, G superior, fr. capsule, seeds winged] Dyckia lf. margin spinose-serrate Pitcairnia
Subfamily Puyoideae [Usu. terrestrial, G superior, fr. capsule, seeds winged]
Puya (e. g. P. alpestris) large, coarse lf. rosettes
Subfamily Tillandsioideae [Epiphytic, lvs. usu. entire, G superior, fr. capsule, seeds comose]
Guzmania lvs. flat; inflor. pedunculate; fl. bracts colorful, spiral
Tillandsia lvs. var.; inflor. unit spicate; fls. distichous; bracts colorful
Tillandsia usneoides
Vriesia
Spanish Moss s.e. U.S.; epiphytic
lvs. flat; inflor. unit spicate; fls. distichous; bracts colorful
Cyperaceae - Sedge family (Gr. for several species of the genus Cyperus). 104 genera / ca. 5,000 species.
If cauline leaves are present, note the closed, sheathing leaf bases and the tristichous leaf arrangement.
Remove, observe, dissect, and draw a sedge spikelet, either in flower or fruit. Study the flower morphology, noting that the perianth, if present at all, consists of bristle-like tepals. Note the bracts (scales) arranged along an axis (rachilla), either in a spiral or distichous arrangement. Study and draw the fruit type for this family, an achene.
EXEMPLARS:
$\begin{array}{llll}\begin{array}{lll}\text { Cyperus involucratus } \\ \text { Cyperus papyrus* }\end{array} & \begin{array}{l}\text { Umbrella Plant } \\ \text { Papyrus }\end{array} & \begin{array}{l}\text { W. Indies, S. Am. } \\ \text { C. Africa, Nile Valley }\end{array} & \begin{array}{l}\text { cultivated ornamental } \\ \text { cult. orn.; early "paper" }\end{array}\end{array}$
Juncaceae - Rush family (L. for binder, in reference to use in weaving and basketry). 7 genera/ca. 350 spp .
If material is available, study the flowers of a member of this family, noting the biseriate-homochlamydeous, scarious perianth, typically 6 stamens, and 3-carpellate, superior ovary. Draw. Also study and draw the fruit, a capsule, and contrast this fruit type with that of the Cyperaceae.
EXEMPLAR:
Juncus_sp.
Rush
ecologically important

Poaceae (Gramineae) - Grass family (from Poa, Greek name for a grass). 668 genera / 9,500 species.
Note the leaves, which are distichous, with an open, sheathing leaf base and a ligule at the junction of sheath and blade. Remove, observe, dissect, and draw a grass spikelet, either in flower or fruit. Note its structure: typically 2 glumes at the base of an axis (rachilla), and one or more florets on a very short lateral branch. Draw a complete spikelet, then dissect open a floret, illustrating the lemma, palea, and reduced flower (lodicules, stamens, and pistil) or fruit within. Study and draw the fruit type for this family, a grain.

Arundo donax	Giant Reed	Europe	weed
Avena sativa*	Oats	Mediterranean region	cereal grain
Cortaderia sp.	Pampas Grass	Argentina	cultivated ornamental
Hordeum vulgare*	Barley	Mediterranean region	cereal grain
Muhlenbergia rigida	Deer Grass	California	ecologically important
Oryza sativa*	Rice	cereal grain	
Phyllostachys aurea	Golden Bamboo	C. Asia	China, Japan
Sacharum officinarum*	Sugar Cane	Asia or E. Indies(?)	cultivated ornamental
Secale cereale*	Ryser	Mediterranean region	cereal grain
Triticum aestivum*	Wheat	Mediterranean region	cereal grain
Zea mays*	Corn	Central, S. America	cereal grain

FAMILY CHARACTERISTICS: Example Sheet

FAMILY: Haemodoraceae
SPECIES SCIENTIFIC/COMMON NAME: __Anigozanthos flavidus

Plant Habit	e.g., herb, shrub, tree, vine
Stem Type - Underground	e.g., rhizome, bulb, corm
Leaf Type	e.g., simple, pinnate, palmate, geminate-pinnate, ternate
Leaf Arrangement	e.g., spiral, opposite-decussate, distichous
Leaf Attachment	e.g., sessile, petiolate, amplexicaul, sheathing
Leaf/Leaflet Blade Shape	e.g., ovate, elliptic, lanceolate
Leaf/Leaflet Blade Base/Margin/Apex	e.g., cuneate / serrate / acuminate
Leaf/Leaflet Surface	e.g., glabrous, tomentose, pubescent
Stipule (+/-)	e.g., exstipulate, stipulate
Inflorescence Type	e.g., raceme, thryse, spike, panicle
Inflorescence Bract/Bractlet (+/-)	e.g., bracteate, involucrate
Flower Sex	e.g., unisexual, bisexual/perfect
Flower Bract/Bractlet (+/-)	e.g., fls. bracteate, ebracteate
Flower Symmetry	e.g., actinomorphic (radial), zygomorphic (bilateral)
Perianth Cycly	e.g., dichlamydeous, homochlamydeous
Perianth/Corolla Type	e.g., bilabiate, campanulate, urceolate
Calyx Fusion/Aestivation	e.g., synsepalous / valvate
Corolla Fusion/Aestivation	e.g., sympetalous / convolute
Hypanthium (+/-) / Shape	e.g., hypanthium tubular
Stamen Position	e.g., antisepalous, diplostemonous
Stamen Arrangement	e.g., didynamous, tetradynamous, whorled, spiral
Androecium Fusion	e.g., epipetalous, monadelphous
Staminode (+/-)/Shape	e.g., present / oblanceoloid, filiform
Anther Attachment	e.g., basifixed, dorsifixed-versatile
Anther Dehiscence/Direction	e.g., longitudinal, poricidal / introrse, extrorse
Gynoecial Fusion	e.g., syncarpous, apocarpous
Ovary Position	e.g., inferior, superior
Perianth/Androecial Position	e.g., hypogynous, perigynous, epigynous, epiperigynous
Carpel Number	e.g., 1, 2, 3, 4, 5, 10
Locule Number	e.g., 1, 2, 3, 4, 5, 10
Placentation	e.g., axile, parietal, basal
Ovule Number (per carpel)	e.g,, , 2, ∞
Style Position / Stigma Shape	e.g., terminal, gynobasic / linear
Fruit Type	
	e.g., drupe, loculicidal capsule, achene, follicetum

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.

FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Placentation	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.

FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stame Position / Stigma Shape	
Pramen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

Plant Systematics Laboratory \#8 DIVERSITY AND CLASSIFICATION OF FLOWERING PLANTS: EUDICOTS

The main objective is to learn to identify a given plant to plant family. Recognizing the family of an unknown angiosperm can be quite helpful in ultimately identifying it using a taxonomic key or specimen comparison. Another objective is to learn to use descriptive morphological terminology. A final objective is to learn the names of one or more exemplars of a given plant family.

The following include character sheets to be used for observing the characteristics of specific families of flowering plants. For each family, determine the character states of the characters listed and fill out the floral formula. Make a drawing of at least one plant family exemplar.

Learn to recognize and know scientific name of EXEMPLARS in bold. For EXEMPALRS marked "*", be able to recognize scientific name, and know common name, family, and plant use/part used.

EUDICOT APOMORPHIES

Observe the demonstration slides of a typical non-Eudicot pollen grain. Note the single, furrow-shaped aperture, an aperture type termed monosulcate. Draw and label.

Observe the demonstration slides of a typical Eudicot pollen grain. Note the three, furrow-shaped apertures, an aperture type termed tricolpate. Draw and label.

PROTEALES

Platanaceae-Sycamore / Plane Tree family (Greek Platanus, broad leaf). 1 genus (Platanus) / 7 species.
Observe a vegetative and reproductive branch of Platanus. Note the distinctive encircling stipules (leaving an encircling stipule scar on the twigs), infrapetiolar buds, and palmately divided leaves. Note the inflorescence, consisting of globose head units, which bear either male or female flowers. What is the plant sex of family members? Also note the fruits, a multiple of achenes, with a bristly perianth. EXEMPLAR:
Platanus racemosa Western Sycamore Platanaceae W USA cult. orn.

Proteaceae - Protea family (after Proteus, the sea god, for his versatility in changing form). 75 genera / 1350 species.

Observe members of this family. Note the typically coriaceous leaves and the flowers of great diversity of forms. The inflorescence is quite variable, sometimes with hundreds of flowers clustered in a head (e.g., Protea, Leucospermum) or raceme (e.g., Banksia). Carefully pull off a single flower and draw. Note its structure: a perianth of 4 sepals, 4 antisepalous stamens (in some taxa at the tips of the sepals with sessile anthers), and a single pistil. Draw a stamen close-up. Make a longitudinal section of the ovary and note the placentation; draw. Fill out a family sheet for an exemplar of this group.
EXEMPLARS:

Banksia sp.	Banksia	Proteaceae	Australia	cult. orn.
Protea sp.	Protea	Proteaceae	S. Africa	cult. orn.
Macadamia ternifolia*	Macadamia	Proteaceae	Australia	edible seed

CARYOPHYLLAES

CORE CARYOPHYLLALES APOMORPHIES

If available, prepare or observe a demonstration slides of a typical campylotropous ovule, e.g., from a cactus. Note its structure and venation (see Chapter 12). Draw and label. What are two other apomorphies of the Core Caryophyllales?

HIGHER CARYOPHYLLALES APOMORPHY

Note the reddish coloration of various members of the so-called "Higher Caryophyllales", which include about 10 families. What causes this pigmentation and how is it different from other angiosperms?

Aizoaceae - Mesembryanthemum or Vygie family (meaning always alive"). 128 genera / 1850 species.
Note the leaf texture and arrangement of exemplars of the Aizoaceae. Section a leaf. Dissect a flower and note the uniseriate perianth and, in many taxa, staminodes that strongly resemble petals. What is the stamen merosity? the perianth/androecial position? the ovary position? the placentation? Fill out a family sheet for this group.
EXEMPLARS:
Aptenia cordifolia
Carpobrotus edulis
Faucaria tigrina
Lithops sp.
Trichodiadema sp.

Baby Sun-Rose	Aizoaceae	S. Africa
Iceplant, Hottentot-Fig	Aizoaceae	S. Africa
Tiger's Jaw	Aizoaceae	S. Africa
Stone Plant	Aizoaceae	S. Africa
	Aizoaceae	S. Africa

Cactaceae - Cactus family (Greek for a spiny plant). 97 genera / 1400 species.
Note the distinctive vegetative form of various cacti, most of which lose their photosynthetic leaves early in development. Note the succulent stems, functioning to store water. Observe prickly pears, if available and note their stem type. What is the name for the distinctive, modified bud which bears leaf spines? Which group of cacti have glochidia? If available, observe glochidia under a dissecting microscope and note the distinctive retrorse barbs.

If flowers are available, dissect one and note the perianth, consisting of numerous parts grading from sepal-like to petal-like structures. What is the stamen merosity? perianth/androecial position? ovary position? placentation?
EXEMPLARS:
Opuntia spp.
Pereskia grandifolia

Prickly-Pear, Cholla	Cactaceae	N., S. Am.
Pereskia	Cactaceae	Brazil

Caryophyllaceae - Carnation family (meaning "clove-leaved"). 87 genera / 2300 species.
Polygonaceae - Buckwheat family (meaning "many knees," from swollen nodes found in some species). 46 genera / 1100 species.

Other CARYOPHYLLAES of economic importance:

Beta vulgaris*	Beet
Spinacia oleracea*	Spinach
Bougainvillea $\mathbf{\text { sp. }}$	Bougainvillea
Plumbago capensis	Plumbago

Amaranthaceae	Mediterranean
Amaranthaceae	S.w. Asia
Nyctaginaceae	S. Am.
Plumbaginaceae	S. Africa

SAXIFRAGALES

Crassulaceae - Stonecrop family (meaning "thick or succulent little plant"). 33 genera / ca. 1500 species.
Note the vegetative form of family exemplars. Section a leaf and note the distinctive texture. What is the photosynthetic pathway of members of this family?

If flowers are available, dissect one and note the perianth cycly, androecium cycly and position, and distinctive gynoecial fusion. Note the fruits, if available. Fill out a family sheet for this group. EXEMPLARS:

Crassula argentea
Kalenchoë beharensis
$\begin{array}{lll}\text { Jade Plant } & \text { Crassulaceae } & \text { cult. orn. } \\ \text { Felt Plant } & \text { Crassulaceae } & \text { cult. orn. }\end{array}$

ROSIDS

MYRTALES

Myrtaceae - Myrtle family (myrtus, Gr. name for myrtle). 120 genera / 3850 species.
What is the plant habit of family members? Observe the leaves under a dissecting microscope or hand lens and note the pellucid-glandular or punctate-glandular leaves. What is the function of these?

Dissect and study a flower, noting in particular the ovary position, perianth/androecial position, and stamen number. If Eucalyptus is available, note the distinctive perianth, a calyptra.
EXEMPLARS:

Callistemon citrinus
Eucalyptus sideroxylon
Pimenta dioica*
Psidium guajava*
Syzygium aromaticum*

Bottlebrush
Red Ironbark
Allspice
Guava
Cloves

Myrtaceae Myrtaceae
Myrtaceae
Myrtaceae
Myrtaceae
cult. orn.
cult. orn. spice (from drupe)
fruit tree spice (from fl. buds)

ROSIDS: EUROSIDS I

CUCURBITALES

Cucurbitaceae - Cucumber / Gourd family (L. for gourd). 120 genera / 775 species.
Note the plant habit, plant sex, and fruit type of a member of the Cucurbitaceae.
EXEMPLARS:

Citrullus lanatus*	Watermelon	Cucurbitaceae	food crop
Cucumis melo**	Melons	Cucurbitaceae	food crop
Cucumis sativa*	Cucumber	Cucurbitaceae	food crop
Cucurbita pepo*	Squash, Pumpkin	Cucurbitaceae	food crop
Luffa sp.*	Luffa	Cucurbitaceae	sponge

FABALES

Fabaceae - Bean/Pea family (after faba, Latin name for broad bean). 643 genera / 18,000 species.
Observe a legume, the fruit type of all Fabaceae. What are the features of a legume? From what type of pistil is a legume derived?

For one or more of the following subfamilies, fill out a family sheet:
Caesalpinioideae. Note the flower symmetry, stamen fusion, and corolla aestivation.
Faboideae. Note the flower symmetry, stamen fusion, and corolla aestivation. What is the specialized type of perianth type of this subfamily?

Mimosoideae. Note the flower symmetry, stamen fusion, and stamen number. What is the showy part of the flower?
EXEMPLARS:

Acacia longifolia	Wattle	Fabaceae	pan-tropical	cult. orn.
Acacia redolens	Wattle	Fabaceae		cult. orn.
Arachis hypogaea*	Peanut	Fabaceae		edible seeds
Bauhinia variegata	Orchid Tree	Fabaceae	India, China	cult. orn.
Ceratonia siliqua	Carob, St. John's Bread	Fabaceae	e. Mediter.	cult., ed. fr.
Erythrina caffra	Coral Tree	Fabaceae	e. S. Africa	cult. orn.
Erythrina coralloides	Naked Coral Tree	Fabaceae	warm temp.,trop.	cult. orn.
Glycine max*	Soybean	Fabaceae	n.e. China	edible seed
Medicago sativa	Alfalfa, Lucerne	Fabaceae		forage crop
Phaseolus vulgaris*	Bean (incl. Pinto)	Fabaceae	C., S. Am.	edible seed
Pisum sativum*	Pea	Fabaceae		edible seed

FAGALES

Fagaceae - Oak family (Latin for the beech tree). 8 genera / 700 species.
Observe the plant habit and leaf morphology of an oak in the genus Quercus. What is the plant sex? The inflorescence type?
EXEMPLARS:
Quercus suber
Fagaceae

ROSIDS: EUROSIDS I (continued)

MALPIGHIALES

Euphorbiaceae - Spurge family (after Euphorbus, physician to the king of Mauritania, 1st century). ca. 300 genera / ca. 8,000 species.

Observe the vegetative form of some of the stem-succulent Euphorbia's (subfamily Euphorbioideae) from S. Africa. Note the often prominent stipular spines. Pierce the stem to see the distinctive latex. Obtain material of Euphorbia or Chamaecyse inflorescences, the cyathium. Draw this in face or oblique view and label the parts: bracts, glands (if present), male flowers, and female flowers. Make a longitudinal section of a cyathium and dissect out a single male flower, consisting of a single stamen. Draw, noting the typical junction between pedicel and filament. Pull out a female flower and note the components. What is the carpel number? Draw.
EXEMPLARS:
Aleurites fordii
Euphorbia grandicornis
Euphorbia milii
Hevea brasiliensis*
Manihot esculenta*
Ricinus communis*

Tung Oil Tree	central Asia	oil (drying)
Cow's-horn	S. Afr.	cult. orn.
Crown-of-Thorns	Madagascar	cult. orn.
Rubber Tree	S. Am.	source of natural rubber
Bitter Cassava	trop. Brazil	food (from roots/cyanide!), tapioca
Castor Bean	e/ne Afr., ME	oil, poison (ricin, toxalbumin)

ROSALES

Rosaceae - Rose family (Latin for various roses). 95 genera / 2800 species.
Observe a member of the rose family and note the stipules at the base of the leaf, found in almost all members of the family. Make a longitudinal section of a flower and note the hypanthium. What is the perianth/ androecial position, ovary position, and gynoecial fusion of family members vary? What are some fruit types of family members?
EXEMPLARS:

Eriobotrya japonica
Fragaria Xananassa*
Malus domestica*
Prunus Xdomestica*
Prunus persica*
Pyrus communis*
Pyrus kawakami
Raphiolepis indica
Rosa sp.
Rubus spp.*

Loquat
Strawberry
Apple
Plum
Peach
Pear
Evergreen Pear
Indian Hawthorn
Rose
Blackberry, Raspberry

China, Japan	fruit edible fruit achenecetum fruit pome
Asia	fruit drupe
Asia	fruit drupe
China	fruit pome
Eur., w. Asia	cult. orn. cult. orn. cult. orn. Taiwan
S. China	

Moraceae - Mulberry family (Latin name for mulberry). ca. 40 genera / 1100 species
Make a sagittal longitudinal section of a fig (Ficus sp.) and note the inflorescence and/or fruit type. What is their structure? What are they called? What is the plant sex? The pollination mechanism?
EXEMPLARS:
Ficus carica*
Ficus nitida
Ficus rubiginosa
Morus sp.*

Fig (edible)	Moraceae	fruit crop
Indian Laurel Fig	Moraceae	cult. orn.
Rusty Fig	Moraceae	cult. orn.
Mulberry	Moraceae	fruit crop

ROSIDS: EUROSIDS II

BRASSICALES

Brassicaceae (Cruciferae) - Mustard family (name used by Pliny for cabbagelike plants). 365 genera / 3250 species.

If available, note some economically important members of the Brassicaceae, e.g., some common vegetable plants such as brocolli, cauliflower, or mustard. What class of compounds causes the distinctive odor of these plants (an apomorphy for the order)?

Observe flowers of this distinctive family and note the calyx / corolla fusion and merosity. What is the perianth type? Count the size and number of stamens. What is the stamen arrangement? Draw. Note the ovary and try making an ovary cross-section. Finally, note the fruit. How is it specialized? What are the names of the two fruit types of this family?
EXEMPLARS:
Brassica campestris* Turnip
Brassica oleracea v. botrytis* Brocolli
Brassica oleracea v. capitata* Cabbage
Brassica oleracea v. cauliflora* Cauliflower
Lobularia maritima Sweet Alyssum
Raphanus sativus*
Radish

Brassicaceae	Storage Root
Brassicaceae	Immature flowers
Brassicaceae	Veg. shoot
Brassicaceae	Immature flowers
Brassicaceae	Europe
Brassicaceae	Storage Root

MALVALES

Malvaceae - Mallow family (name used by Pliny, meaning "soft"). ca. 250 genera / 4230 species.
A good exemplar of this family is Hibiscus. Observe a flower and note the bracts subtending the calyx (what are they called?), the calyx aestivation, and the corolla aestivation. What is the stamen fusion? Make a flower longitudinal section to clearly see the ovary position, nectaries, and fusion of androecium and corolla. Draw. What is the specialized anther type? Draw. Note the style (through what does it traverse?), style branches, and stigmas. Finally, make an ovary cross-section to observe the ovule number and placentation.
Draw.
EXEMPLARS:

Chorchorus sp.*
Chorisia speciosa
Cola nitida*
Gossypium sp.*
Hibisus sp.
Theobroma cacao*

Jute
Floss-Silk Tree
Cola
Cotton
Hibiscus
Chocolate
fiber, from fibrovascular bundles cult. orn.
flavoring plant
fiber, from seed trichomes
cult. orn.
flavoring plant, fr. roasted seeds

SAPINDALES

Anacardiaceae - Cashew family (Gr. for heart-shaped, after swollen, red pedicel in cashew fruit). 70 genera / 875 species.
EXEMPLARS:

Anacardium occidentale*
Mangifera indica*
Pistacia vera*
Schinus terebinthifolius

Cashew
Mango
Pistachio
Brazilian Pepper Tree

Anacardiaceae trop. Am.
Anacardiaceae Indomal.
Anacardiaceae Iran-c. Asia
Anacardiaceae Brazil

Rutaceae - Rue / Citrus family (Latin for rue). 153 genera / 1800 species. EXEMPLARS:

Citrus spp.*
Ruta graveolens

Citrus (orange, lemon, grapefruit, etc.) Rue

Rutaceae
Rutaceae

Fruit crops
Herb

ASTERIDS

Dissect an ovule from a member of this group and note the unitegmic condition (see Lab 11, Embryology), an apomorphy for all or most of the Asterids. What other, chemical apomorphy is present? What is the typical corolla fusion of the Asterids.

ERICALES

Ericaceae - [including Empetraceae, Epacridaceae, Monotropaceae, Pyrolaceae] - Heath family (from Erica, a name used by Pliny, adapted from Theophrastus). 106 genera / ca. 3355 species.

Make a flower longitudinal section and draw, noting the corolla fusion, stamen fusion, nectaries, and ovary position. Fill out a family sheet.

Obtain fresh (or liquid preserved) material of a member of the Ericaceae exhibiting stages from young buds to mature flowers. Open the flower buds and draw a stamen from each of 2-4 stages, up to open flowers at anthesis. Note the 180° inversion of the anthers, an apomorphy for most of the group. Note the anther dehiscence type and direction and any anther appendages that might be present.

Dissect pollen grains from the anther of a member of the Ericaceae. Stain the grains with toludine blue or acetocarmine. If available, clear the grains in Hoyer's solution (see Lab 12, Palynology) and view with Phase contast or Nomarski (DIC) optics. Note that the four pollen grains resulting from meiosis remain attached (at the time or release) as a tetragonal tetrad, an apomorphy for all but basal members of the Ericaceae. Carefully draw a pollen tetrad, noting the boundaries of the pollen grains and the intersecting apertures.

EXEMPLARS:

Arbutus unedo
Rhododendron spp.*
Vaccinium spp.*
Xylococcus bicolor

Strawberry Tree
Rhododendron, Azalea
Blueberry
Mission Manzanita

Ericaceae
Ericaceae
Ericaceae
Ericaeae
Mediterranean
California's
cult. orn. cult. orn. food-berry native

GENTIANALES

Apocynaceae [incl. Asclepiadaceae] — Dogbane/Milkweed family (Greek for "away from dog," in reference to some taxa used as dog poison). 411 genera / 4650 species.

Obtain flowers of an "Asclepiadoid", a milkweed, formerly classified in the Asclepiadaceae. Study the unusual flower morphology. Open a flower from the side to expose the gynoecium. Note and draw the two, distinct ovaries and styles, the latter leading to a common, enlarged stigma. From the side of the flower, note and draw the unusual anthers, which develop into pollinia. Take a dissecting needle and gently pull up on the "corpusculum", to which two arm-like "retinacula" and masses of connate pollen grains are attached. What is the name of the structure consisting of adnate androecium and gynoecium?

Obtain a flower of a more basal (non-milkweed) member of the Apocynaceae. Make a flower longitudinal section and note the ovary, style, and stigma, and any appendages that might be present. Do you see resemblances to the milkweed above?
EXEMPLARS:
Asclepias sp. Milkweed Apocynaceae
Carissa grandiflora Natal Plum Apocynaceae
Nerium oleander Oleander
Catharanthus roseus* Madagascar Periwinkle Apocynaceae

Natal, S. Africa cult. orn.
Madagascar Periwinkle Apocynaceae Madagascar Source of alkaloids vincristine (leucocristine) \& vinblastine (leucoblastine), used to treat childhood leukemia Rauvolfia serpentina* Snakeroot India Source or reserpine, an important alkaloid used to treat hypertension (high blood pressure) and psychotic disorders

LAMIALES

Bignoniaceae - Bignoniaceae - Bignonia family (after Abbé Jean-Paul Bignon, 1662-1743, court librarian at Paris, friend of Tournefort). 109 genera / 750 species.

Draw a flower of this family, especially noting the corolla fusion, corolla symmetry, and stamen arrangement. Observe and draw the seeds of a typical fruit and note their morphology.
Jacaranda mimosifolia
Jacaranda
Bignoniaceae N. W. Argentina cult. orn.

Kigelia pinnata
 Spathodea campanulata
 Tecomaria capensis

Sausage Tree
African Fountain Tree
Cape-Honeysuckle

Bignoniaceae Africa
Bignoniaceae
Bignoniaceae
Tropical Africa
South Africa
cult. orn.
cult. orn.
cult. orn.

Lamiaceae - Lamiaceae (Labiatae) - Mint family (lamium, gullet, after the shape of the corolla tube or old Latin name used by Pliny). 251 genera / 6700 species.

Fill out a family sheet for an exemplar of the mint family. Note particularly the leaf arrangement, stem shape (often 4 -sided), inflorescence type, and ovary shape/style position. Make a flower longitudinal section and draw. Carefully remove the calyx and corolla of another flower and draw the 4-lobed ovary.

Mentha piperita*	Peppermint	Lamiaceae	Europe	herb (leaf, oil)
Mentha spicata*	Spearmint	Lamiaceae	Europe	herb (leaf, oil)
Ocimum basilicum*	Basil	Lamiaceae	Trop. Asia, Afr.	herb (leaf)
Origanum vulgare*	Oregano	Lamiaceae	Mediter. region	herb (leaf)
Rosamarinus officinalis*	Rosemary	Lamiaceae	Mediterranean	herb(leaf)
Salvia officinalis*	Sage	Lamiaceae	Mediter. region	herb (leaf)
Thymus vulgaris*	Thyme	Lamiaceae	Mediter. region	herb (leaf)

SOLANALES

Solanaceae - Nightshade family (Latin for sleeping or comforter). 94 genera / 2950 species.
Fill out a family sheet of a family member. Note the flower symmetry and corolla aestivation.
EXEMPLARS:
Atropa belladona
Brugmansia sp.
Capsicum*
Datura sp.
Lycopersicon esculentum*
Nicotiana tabacum*
Physalis philadelphica
Solanum tuberosum*
Belladona
Angel's Trumpet
Pepper
Jimson weed
Tomato
Tobacco
Tomatillo
Potato

Solanaceae	Alkaloid atropine (eye dilator)
Solanaceae	Cult. orn.
Solanaceae	Food (berry), flavoring
Solanaceae	Hallucinogen, poisonous
Solanaceae	Food (berry), flavoring
Solanaceae	Fumatory (carcingenic)
Solanaceae	Flavoring plant
Solanaceae	Food

APIALES

Apiaceae (Umbelliferae) - Carrot family (apium, used by Pliny for celerylike pl). 446 genera / 3540 spp .
Note the leaf attachment and inflorescence type of this family. Draw a single flower, noting the inferior ovary and stylopodium. Draw a fruit, a schizocarp of mericarps, noting the carpophore.
EXEMPLARS:

Apium graveolens*	Celery	Apiaceae	Medit. region	Food (leaves), herb (fruits)
Conium maculatum	Poison Hemlock	Apiaceae	Medit. region	Poisonous plant
Coriandrum sativum*	Coriander, Cilantro	Apiaceae	Medit. region	Herb (fruits), flav (leaves)
Daucus carota*	Carrot	Apiaceae	Medit. region	Food (root), herb (fruits)
Foeniculum vulgare*	Wild Fennel	Apiaceae	Medit. region	Herb (fruits)
Petroselinum crispum*	Parsely	Apiaceae	Medit. region	Garnish (leaves)

Araliaceae - Ginseng family (possibly from French Canadian Aralie). 47 genera / 1325 species.
Note the leaf attachment and inflorescence type of this family. Draw a single flower, noting the inferior ovary. Make and ovary longitudinal section and note the placentation. Draw. Make an ovary cross section and draw, noting the carpel number. What is the fruit type? EXEMPLARS:

Fatsia japonica	Fatsia	Araliaceae	Cult. orn.
Hedera sp.	Ivy	Araliaceae	Cult. orn.
Panax sp.	Ginseng	Araliaceae	Medicinal uses/
Schefflera actinophylla	Schefflera	Araliaceae	Cult. orn.
Tetrapanax papyrifer	Chinese rice paper	Araliaceae	Paper

ASTERALES

Asteraceae (Compositae)—Sunflower family (after Aster, meaning star). 1528 genera / 22,750 species.
Note the typical inflorescence type of this family. Make a longitudinal section of a head and draw, noting the compound receptacle, involucral bracts (phyllaries) and flowers. Carefully remove and draw a ray flower and disk flower. Note the ovary, calyx (modified as a pappus, which may be absent), and corolla. Carefully dissect the corolla from the side and draw the distinctive stamen fusion. Note and draw a fruit.

Cynara scolymus*	Artichoke	Asteraceae	Medit.	Food (heads)
Helianthus annuus*	Sunflower	Asteraceae	N. Am.	Seeds, oil
Lactuca sativa*	Lettuce	Asteraceae		food (shoot)

FAMILY CHARACTERISTICS: Example Sheet

FAMILY: Haemodoraceae
SPECIES SCIENTIFIC/COMMON NAME: Anigozanthos flavidus

Plant Habit	e.g., herb, shrub, tree, vine
Stem Type - Underground	e.g., rhizome, bulb, corm
Leaf Type	e.g., simple, pinnate, palmate, geminate-pinnate, ternate
Leaf Arrangement	e.g., spiral, opposite-decussate, distichous
Leaf Attachment	e.g., sessile, petiolate, amplexicaul, sheathing
Leaf/Leaflet Blade Shape	e.g., ovate, elliptic, lanceolate
Leaf/Leaflet Blade Base/Margin/Apex	e.g., cuneate / serrate / acuminate
Leaf/Leaflet Surface	e.g., glabrous, tomentose, pubescent
Stipule (+/-)	e.g., exstipulate, stipulate
Inflorescence Type	e.g., raceme, thryse, spike, panicle
Inflorescence Bract/Bractlet (+/-)	e.g., bracteate, involucrate
Flower Sex	e.g., unisexual, bisexual/perfect
Flower Bract/Bractlet (+/-)	e.g., fls. bracteate, ebracteate
Flower Symmetry	e.g., actinomorphic (radial), zygomorphic (bilateral)
Perianth Cycly	e.g., dichlamydeous, homochlamydeous
Perianth/Corolla Type	e.g., bilabiate, campanulate, urceolate
Calyx Fusion/Aestivation	e.g., synsepalous / valvate
Corolla Fusion/Aestivation	e.g., sympetalous / convolute
Hypanthium (+/-) / Shape	e.g., hypanthium tubular
Stamen Position	e.g., antisepalous, diplostemonous
Stamen Arrangement	e.g., didynamous, tetradynamous, whorled, spiral
Androecium Fusion	e.g., epipetalous, monadelphous
Staminode (+/-)/Shape	e.g., present / oblanceoloid, filiform
Anther Attachment	e.g., basifixed, dorsifixed-versatile
Anther Dehiscence/Direction	e.g., longitudinal, poricidal / introrse, extrorse
Gynoecial Fusion	e.g., syncarpous, apocarpous
Ovary Position	e.g., inferior, superior
Perianth/Androecial Position	e.g., hypogynous, perigynous, epigynous, epiperigynous
Carpel Number	e.g., 1, 2, 3, 4, 5, 10
Locule Number	e.g., 1, 2, 3, 4, 5, 10
Placentation	e.g., axile, parietal, basal
/ Stigma Shape	e.

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.

FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Placentation	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.

FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Placentation	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS
Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY: \qquad
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

FAMILY CHARACTERISTICS

Fill out the states for the following characters.
FAMILY:
SPECIES SCIENTIFIC/COMMON NAME:

Plant Habit	
Stem Type - Underground	
Leaf Type	
Leaf Arrangement	
Leaf Attachment	
Leaf/Leaflet Blade Shape	
Leaf/Leaflet Blade Base/Margin/Apex	
Leaf/Leaflet Surface	
Stipule (+/-)	
Inflorescence Type	
Inflorescence Bract/Bractlet (+/-)	
Flower Sex	
Flower Bract/Bractlet (+/-)	
Flower Symmetry	
Perianth Cycly	
Perianth/Corolla Type	
Calyx Fusion/Aestivation	
Corolla Fusion/Aestivation	
Hypanthium (+/-) / Shape	
Stamen Position	
Stamen Arrangement	
Androecium Fusion	
Staminode (+/-)/Shape	
Anther Attachment	
Anther Dehiscence/Direction	
Gynoecial Fusion	
Ovary Position	
Perianth/Androecial Position	
Carpel Number	
Locule Number	
Placentation	
Ovule Number (per carpel)	
Style Position / Stigma Shape	
Fruit Type	

PLANT MORPHOLOGY

A. PLANT HABIT, PLANT HABITAT, ROOTS, STEMS, TWIGS

Objective: To be able to recognize and define the plant characters and character states exemplified below. Working in pairs, first determine the meaning/concept of a given character state. Then, learn the specific character state. Review at end. [You need not memorize specific examples on display.]

PLANT HABIT

What does plant habit refer to?
List the character state and define (example optional). Draw or photograph as needed.
Character State Definition Example (optional)

1$)$	
2$)$	
3$)$	
4$)$	

PLANT HABITAT

What does plant habitat refer to?
List the character state and define (example optional). Draw or photograph as needed.

Character State	Definition
5$)$	
6$)$	
7$)$	

ROOT TYPE

What is the function of a root?
Observe and list the parts of a root.
List the character state and define (example optional). Draw or photograph as needed.

Character State	Definition Example (optional)
8$)$	
9$)$	
10$)$	
11$)$	
12$)$	

STEM/SHOOT TYPE

What is the function of a stem? What is a shoot?
Define and list the parts of a shoot.
List the character state and define (example optional). Draw or photograph as needed.

Character State	Definition Example (optional)
13$)$	
14$)$	
15$)$	
16$)$	
17$)$	
18$)$	
19$)$	
20$)$	
21$)$	
22$)$	
23$)$	
24$)$	
25$)$	

STEM HABIT

What does stem habit refer to?
List the character state and define (example optional). Draw or photograph as needed.

Character State	Definition
26$)$	
27$)$	
28$)$	
29$)$	

TWIG MORPHOLOGY

Draw a representative twig and label the following: leaf scar, leaf vascular bundle scars, stipule scars (if present), terminal bud, lateral (axillary) bud, node, internode, lenticels.

For a single bud, carefully make a longitudinal section with a razor blade. Observe (under dissecting scope) the bud scales and young leaf primordia. Draw and label.

BUD TYPE

List the character state and define (example optional). Draw or photograph as needed.

Character State	Definition
30$)$	
31$)$	
32$)$	
33$)$	
34$)$	

STEM BRANCHING PATTERN

List one example and define each of the following character states. Draw or photograph as needed.

Character State	Definition
35$)$	
36$)$	
37$)$	

B. LEAF STRUCTURAL TYPE, LEAF ATTACHMENT, LEAF VENATION, LEAF TYPE

LEAF STRUCTURAL TYPE

List the character state and define (example optional). Draw or photograph as needed.

Character State	Definition
1$)$	
2$)$	
3$)$	
4$)$	
5$)$	
6$)$	
7$)$	
8$)$	
9$)$	
10	
11	
12	

LEAF ATTACHMENT

List the character state and define (example optional). Draw or photograph as needed.

Character State	Definition Example (optional)
13$)$	
14$)$	
15$)$	
16$)$	
17$)$	
18$)$	

LEAF VENATION

List the character state and define (example optional). Draw or photograph as needed.

Character State	Definition
19$)$	
20$)$	
21$)$	
22$)$	
23$)$	
24$)$	

LEAF TYPE

List the character state and define (example optional). Draw or photograph as needed.

Character State	Definition
25$)$	
26$)$	
27$)$	
28$)$	
29$)$	
30$)$	
31$)$	
32$)$	
33$)$	
34$)$	
35$)$	

NOTE: Be able to identify/define:
stipule
petiole
blade
rachis
rachilla
leaflet
petiolule
pulvinus.

C. SURFACE FEATURES

For each of the following surface types, define each character state and observe and list one example. Draw or photograph as needed.

VESTITURE

Character State	Definition	Example (optional)
arachnoid		
glabrous		
hirsute		
hispid		
scabrous		
sericeous		
sericeous		
villous		

TRICHOME TYPE

Character State	Definition	Example (optional)
Malpighian		
pilate-glandular		
stellate		

CONFIGURATION

Character State	Definition	Example (optional)
aculeate/prickly		
punctate		
rugose		

EXCRESCENCE

Character State	Definition	Example (optional)
glandular		
glaucous		
viscid		

B. VEGETATIVE MORPHOLOGY AND GENERAL TERMINOLOGY

 VEGETATIVE MORPHOLOGY EXAMPLES: Answer the following.| Acacia longifolia/A. redolens Wattle Fabaceae | Calliandra hematocephala Powderpuff Fabaceae |
| :---: | :---: |
| A) Leaf structural type: | A) Leaf type (specific): |
| B) Leaf shape: | B) Leaf arrangement: |
| C) Leaf base: | C) Leaflet arrangement: |
| D) Leaf apex: | D) Leaflet venation: |
| E) Leaf apical process: | E) Leaf parts at petiole base: |
| Acmispon glaber Deer Weed Fabaceae | Encèlia californica California Encelia Asteraceae |
| A) Leaf type: | A) Leaf base: |
| B) Leaflet shape: | B) Leaf venation: |
| Adenóstoma fasciculàtum Chamise Rosaceae | Eriogonum fasiculatum Ca. Buckwheat Polygonac. |
| A) Stem/shoot type: | A) Stem type (at leaves): |
| B) Leaf arrangement: | B) Leaf arrangement: |
| C) Leaf shape: | C) Leaf margin: |
| D) Leaf apex: | D) Leaf apical process: |
| Artemísia califórnica Coastal Sagebrush Asteraceae | Erythrina caffra Coral-Bean Fabaceae |
| A) Leaf division: | A) Leaf type: |
| Arundo donax / Avena fatua Wild Oat Poaceae | B) Leaf part (arrow): |
| A) Leaf arrangement: | C) Leaf part (arrow): |
| B) Leaf venation: | D) Leaf part (arrow): |
| C) Leaf attachment: | Eucalyptus sideroxylon Eucalyptus Myrtaceae |
| D) Lf str. type (inflor.): | A) Leaf type: |
| Bauhinia variegata Orchid Tree Fabaceae | B) Leaf shape: |
| A) Leaf shape: | Foeniculum vulgare Fennel Apiaceae |
| B) Leaf base: | A) Leaf division: |
| C) Leaf division: | B) Leaf attachment: |
| D) Leaf venation: | Heterómeles arbutifòlia Toyon, Christmas Berry Rosac. |
| | A) Leaf margin: |
| | B) Leaf texture: |

Juniperus sp. Juniper Cupressaceae
A) Leaf arrangement:
B) Leaf orientation:
A) Leaf shape:

Lupinus hirsutissimus Stinging Lupine Fabaceae
A) Leaf type:
B) Vestiture:

Malosma laurina Laurel-Sumac Anacardiaceae
A) Leaf texture:
B) Leaf posture (longitudinal):

Màrah macrocárpus Wild-Cucumber Cucurbitaceae
A) Plant habit:
B) Leaf type:
C) Leaf division:
D) Stem/Leaf structure (coiled):

Plátanus racemòsa California Sycamore Platanaceae
A) Leaf division:
B) Bud type:
C) Stipule scar type:

Pópulus fremóntii Western Cottonwood Salicaceae
A) Leaf shape:
B) Leaf base:

Prunus ilicifolia Holly-leaf Cherry Rosaceae
A) Leaf margin:
B) Leaf posture:

Rhus integrifòlia Lemonadeberry Anacardiaceae
A) Leaf texture:
B) Leaf margin:

Sagittaria latifolia Arrow Leaf Alismataceae
A) Leaf shape:
B) Leaf base:

Salix lasiolepis Arroyo Willow Salicaceae
A) Leaf epidermal excrescence (abax.):

Salvia mellifera Black Sage Lamiaceae
A) Leaf arrangement:
B) Leaf surface (configuration):

Schefflera sp. Araliaceae
A) Leaf type:
B) Leaf surface:

Schinus terebinthifolius Pepper Tree Anacardiaceae
A) Leaf type:
B) Leaf surface:

Stelitzia reginae Bird of Paradise Strelitziaceae
A) Leaf venation:
B) Leaf attachment:
C) Leaf blade shape:

Tropaeolum majus Nasturtium Tropaeolaceae
A) Leaf base:
B) Leaf blade shape:

Washingtonia robusta Fan Palm Arecaceae
A) Leaf posture:
B) Leaf division:

Leaf Texture:

A) Carpobrotus/Aloe leaf:
B) Protea: C) Allium (bulb scales):

Leaf Surface:

A) Nicotiana glauca leaf:
B) Banksia sp. leaf (abaxial):
C) Kigelia
africana leaf: D) Phacelia sp. stem/leaf:

VEGETATIVE MORPHOLOGY EXERCISE

Fill in the following for each species. For at least one, write a formal description, listing the organ or part (in Bold, below) followed by character state(s), the states separated by commas.

	SPECIES \#1:	SPECIES \#2:	SPECIES \#3:
Plant Duration $\mathbf{1}^{\prime}$			
Plant Habit / Height			
Stem Type			
(Aerial) Stem Habit²			
Leaf (Leaves) Number / Length $\mathbf{3}$			
Leaf Type			
Leaf Attachment			
Leaf stipule/stipel presence/absence			
Leaf Duration			
Leaf Position			
Leaf Arrangement			
Leaf Orientation			
Leaf Posture			
Rachilla Number (if bi-compound)			
Leaflets Number (if compound)			
Leaf Blade / Leaf outline Shape			
Leaflet Blade Shape (if compound)			
Leaflet Blade Attachment (if compd.)			
Leaf/Leaflet Blade Color / Length/Wid			
Leaf/Leaflet Blade Base			
Leaf/Leaflet Blade Margin			
Leaf/Leaflet Blade Apex /Apical Proc.			
Leaf/Leaflet Blade Division			
Leaf/Leaflet Blade Venation			
Leaf/Leaflet Blade Surface6			
Leaf/Leaflet Blade Texture			
Petiole/Petiolule Morph/Color/Size			
Stipule/Stipel Shape/Morph/Size			

${ }^{\mathbf{1}}$ Omit if plant habit = shrub or tree; ${ }^{\mathbf{2}}$ Omit if not specialized; ${ }^{\mathbf{3}}$ Leaf Number (per plant) normally not listed unless unusual; may omit Length if listed for petiole \& blade separately. ${ }^{4}$ You may omit Orientation if variable or mostly horizontal. ${ }^{5}$ Use Leaf Blade if leaf simple; Leaf outline if leaf compound. ${ }^{6}$ Includes configuration, epidermal excrescence, and vestiture; distinguish adaxial and abaxial surfaces.

VEGETATIVE MORPHOLOGY EXERCISE

Fill in the following for each species. For at least one, write a formal description, listing the organ or part (in Bold, below) followed by character state(s), the states separated by commas.

	SPECIES \#4:	SPECIES \#5:	SPECIES \#6:
Plant Duration ${ }^{1}$			
Plant Habit / Height			
Stem Type ${ }^{2}$			
(Aerial) Stem Habit ${ }^{2}$			
Leaf (Leaves) Number / Length ${ }^{3}$			
Leaf Type			
Leaf Attachment			
Leaf stipule/stipel presence/absence			
Leaf Duration			
Leaf Position			
Leaf Arrangement			
Leaf Orientation ${ }^{4}$			
Leaf Posture			
Rachilla Number (if bi-compound)			
Leaflets Number (if compound)			
Leaf Blade / Leaf outline Shape ${ }^{5}$			
Leaflet Blade Shape (if compound)			
Leaflet Blade Attachment (if compd.			
Leaf/Leaflet Blade Color / Length/W			
Leaf/Leaflet Blade Base			
Leaf/Leaflet Blade Margin			
Leaf/Leaflet Blade Apex / Apical Pro			
Leaf/Leaflet Blade Division			
Leaf/Leaflet Blade Venation			
Leaf/Leaflet Blade Surface ${ }^{\mathbf{6}}$			
Leaf/Leaflet Blade Texture			
Petiole/Petiolule Morph/Color/Size			
Stipule/Stipel Shape/Morph/Size			

${ }^{1}$ Omit if plant habit = shrub or tree; ${ }^{2}$ Omit if not specialized; ${ }^{3}$ Leaf Number (per plant) normally not listed unless unusual; may omit Length if listed for petiole \& blade separately. ${ }^{4}$ You may omit Orientation if variable or mostly horizontal. ${ }^{5}$ Use Leaf Blade if leaf simple; Leaf outline if leaf compound. ${ }^{6}$ Includes configuration, epidermal excrescence, and vestiture; distinguish adaxial and abaxial surfaces.

D. FLOWER \& INFLORESCENCE MORPHOLOGY

1) Basic Floral Parts and Dissection

Observe a flower from the outside and identify: bract (if present), pedicel (if present), and perianth. Note if the perianth consists of tepals or tepal lobes or is clearly delimited into calyx and corolla. If the latter (dichlamydeous), note the sepals or calyx lobes and the petals or corolla lobes. Draw.

Now open up the flower by making a longitudinal section of the entire flower with a razor blade. Note the stamens, and whether laminar or filamentous (consisting of a filament and anther). Draw.

Note the gynoecium, consisting of one or more pistils. Note the ovary position, whether superior, or inferior. Note if there is a hypanthium, a tube-like or cup-like structure (arising from the base to the top of the ovary), to which are attached the perianth and androecium. Determine the perianth/androecial position. Draw.

Now, make an ovary cross-section. If the ovary is large enough, you can do this by holding the ovary vertically in one hand and slicing it with a razor blade held in the other hand. [You may instead hold the entire flower upside-down in one hand, such that you will be slicing through the perianth when making an ovary cross-section.] When slicing the ovary, gently cut across the ovary while sliding the blade toward you. (Be careful not to slice into a finger!) Make several, sequential slices with the razor blade. You may leave these on the blade or transfer to a microscope slide using a needle. Observe the sections with a dissecting microscope and note the placentation. Draw.

2A) Floral Description

Dissect a flower and fill in the following character states for selected species. Write a description by listing each organ or part (in Bold, below) followed by character state(s) separated by commas. List the floral formula, draw appropriate floral parts, and illustrate with a floral diagram.

	SP. \#l:	SP. \#2:
Characters		
Inflorescence Position/Type		
Flower Sex		
Flower Symmetry		
Flower Attachment		
Bract(s)/Bractlet(s) (No.)/Size/Shape/Surface		
Receptacle Size/Shape		
Hypanthium (if present) Shape/Size		
Perianth Cycly / Aestivation		
Perianth (\& Hypanthium) Type		
Calyx/Outer Tepal(s) Fusion		
Sepal(s)/Calyx Lobes/Outer Tepal(s) Merosity		
Corolla/Inner Tepal(s) Fusion		
Corolla/Inner Tepal(s) Color		
Petal(s)/Corolla Lobe(s)/Inner Tepal(s) Merosity		
Stamen(s) (Androecium) Cycly/Merosity		
Stamen Arrangement		
Stamen Position		
Stamen Insertion		
Stamen Fusion		
Staminode(s) (if present) No./Pos./Size/Shape		
Anther(s) Attachment		
Anther Dehiscence Type / Direction		
Gynoecium Fusion		
Ovary Position / Attachment (if not sessile)		
Perianth/Androecial Position		
Carpel(s) Number		
Locule(s) Number		
Placentation		
Ovule(s) Number (Per carpel)		
Style(s) Number (Per pistil)		
Style Position/Shape		
Stigma(s) Shape		
Nectary(s) Type/Position		

FLORAL FORMULAS:

	K	C	A	G	K	C	A	G
or	P		A	G	P		A	G

2B) Floral Description

Dissect a flower and fill in the following character states for selected species. Write a description by listing each organ or part (in Bold, below) followed by character state(s) separated by commas. List the floral formula, draw appropriate floral parts, and illustrate with a floral diagram.

Characters	SP. \#3:	SP. \#4:
Inflorescence Position/Type		
Flower Sex		
Flower Symmetry		
Flower Attachment		
Bract(s)/Bractlet(s) (No.)/Size/Shape/Surface		
Receptacle Size/Shape		
Hypanthium (if present) Shape/Size		
Perianth Cycly / Aestivation		
Perianth (\& Hypanthium) Type		
Calyx/Outer Tepal(s) Fusion		
Sepal(s)/Calyx Lobes/Outer Tepal(s) Merosity		
Corolla/Inner Tepal(s) Fusion		
Corolla/Inner Tepal(s) Color		
Petal(s)/Corolla Lobe(s)/Inner Tepal(s) Merosity		
Stamen(s) (Androecium) Cycly/Merosity		
Stamen Arrangement		
Stamen Position		
Stamen Insertion		
Stamen Fusion		
Staminode(s) (if present) No./Pos./Size/Shape		
Anther(s) Attachment		
Anther Dehiscence Type / Direction		
Gynoecium Fusion		
Ovary Position / Attachment (if not sessile)		
Perianth/Androecial Position		
Carpel(s) Number		
Locule(s) Number		
Placentation		
Ovule(s) Number (Per carpel)		
Style(s) Number (Per pistil)		
Style Position/Shape		
Stigma(s) Shape		
Nectary(s) Type/Position		

FLORAL FORMULAS:

	K	C	A	G	K	C	A	G
or	P		A	G	P		A	G

2C) Floral Description

Dissect a flower and fill in the following character states for selected species. Write a description by listing each organ or part (in Bold, below) followed by character state(s) separated by commas. List the floral formula, draw appropriate floral parts, and illustrate with a floral diagram.

Characters	SP. \#5:	SP. \#6:
Inflorescence Position/Type		
Flower Sex		
Flower Symmetry		
Flower Attachment		
Bract(s)/Bractlet(s) (No.)/Size/Shape/Surface		
Receptacle Size/Shape		
Hypanthium (if present) Shape/Size		
Perianth Cycly / Aestivation		
Perianth (\& Hypanthium) Type		
Calyx/Outer Tepal(s) Fusion		
Sepal(s)/Calyx Lobes/Outer Tepal(s) Merosity		
Corolla/Inner Tepal(s) Fusion		
Corolla/Inner Tepal(s) Color		
Petal(s)/Corolla Lobe(s)/Inner Tepal(s) Merosity		
Stamen(s) (Androecium) Cycly/Merosity		
Stamen Arrangement		
Stamen Position		
Stamen Insertion		
Stamen Fusion		
Staminode(s) (if present) No./Pos./Size/Shape		
Anther(s) Attachment		
Anther Dehiscence Type / Direction		
Gynoecium Fusion		
Ovary Position / Attachment (if not sessile)		
Perianth/Androecial Position		
Carpel(s) Number		
Locule(s) Number		
Placentation		
Ovule(s) Number (Per carpel)		
Style(s) Number (Per pistil)		
Style Position/Shape		
Stigma(s) Shape		
Nectary(s) Type/Position		

FLORAL FORMULAS:

	K	C	A	G	K	C	A	G
or	P		A	G	P		A	G

2D) Detailed Floral Description Exercise

Dissect a flower and fill in the following character states for a given species. Write a description by listing each organ or part (in Bold, below) followed by character state(s) separated by commas. List the floral formula, draw appropriate floral parts, and illustrate with a floral diagram.

FLOWER \& INFLORESCENCE MORPHOLOGY: EXAMPLES

Inflorescence Position	terminal; axillary
Inflorescence Development ${ }^{1 / T y p e}{ }^{2}$	raceme of indeterminate umbels; head; panicle; thyrse
Flower Sex	bisexual/perfect; unisexual/imperfect (describe male/female)
Flower Size ${ }^{3}$	2.5 cm long; 9 mm broad
Flower Arrangement ${ }^{4}$ /Orientation	opposite on rachis/divergent; inclined
Flower Symmetry ${ }^{5}$	actinomorphic (radial); zygomorphic (bilateral)
Flower Attachment	pedicellate; sessile; bracteate; ebracteate
Pedicel (if present) Size/Shape	2 cm long; terete
Bract(s)/Bractlet(s) (No.)/Size/Shape/Surface	bracts 3 mm long, ovate, hirsute; bractlets 2, 1 mm , ovate
Receptacle Size/Shape ${ }^{6}$	3 mm long; hemispheric; discoid
Hypanthium (if present) Shape/Size	cup-shaped; flat; 4 mm long, 8 mm wide from edge to edge;
Perianth Cycly / Aestivation	biseriate; homochlamydeous / valvate; convolute
Perianth (\& Hypanthium) Type ${ }^{7}$ cruciate	campanulate; bilabiate; salverform; rotate; urceolate;
Calyx/Outer Tepal(s) Fusion	aposepalous; synsepalous basally; distinct; connate
Calyx/Outer Tepal(s) Size	1.4 cm long; 3 mm wide
Calyx/Outer Tepal(s) Surface	adaxially glabrous; abaxially pubescent; hirsute along veins
Sepal(s)/Calyx Lobes/Outer Tepal(s) Merosity	3, (or 3-merous, trimerous)
Sepal(s)/Calyx Lobes/Outer Tepal(s) Shape	lanceolate, attenuate (clawed), acute
Sepal(s)/Calyx Lobes/Outer Tepal(s) Size	4 mm long; 1.5 mm wide
Corolla/Inner Tepal(s) Fusion	apopetalous; sympetalous
Corolla/Inner Tepal(s) Cycly ${ }^{8}$	uniseriate; biseriate
Corolla/Inner Tepal(s) Color	yellowish; anterior lobe purple with red basal spots
Corolla/Inner Tepal(s) Size	$35-55 \mathrm{~mm}$ long, 20 mm wide
Corolla/Inner Tepal(s) Surface	pubescent; hirsute; bearded at adaxial base
Petal(s)/Corolla Lobe(s)/Inner Tepal(s) Merosity	3; 4; 5 (or 5-merous, pentamerous)
Petal(s)/Corolla Lobe(s)/Inner Tepal(s) Shape	oblanceolate, acuminate
Petal(s)/Corolla Lobe(s)/Inner Tepal(s) Size	1.5 cm long; 3 mm wide
Petal(s)/Corolla Lobe(s)/Inner Tepal(s) Orientation	3 posterior petals/lobes divergent; 2 anterior recurved
Stamen(s) (Androecium) Cycly/Merosity	uniseriate, 8 ; biseriate and pentamerous (or 5+5)
Stamen Type / Attachment	filamentous; laminar / sessile
Stamen Arrangement	whorled; tetradynamous; didymous; didynamous
Stamen Position	antipetalous; antisepalous; diplostemous
Stamen Insertion	exserted; inserted
Stamen Fusion	epipetalous; monadelphous; syngenesious; diadelphous
Staminode(s) (if present) No./Pos./Size/Shape	One, posterior, 12 mm long; lanceoloid
Anther(s) Attachment	basifixed; subbasifixed; dorsifixed; versatile
Anther Dehiscence Type / Direction	longitudinal; poricidal / introrse; extrorse
Gynoecium Fusion	apocarpous; syncarpous; semicarpous; unicarpellous
Ovary Position / Attachment (if not sessile)	superior, inferior, half-inferior / stipitate (stylocarpepodic)
Perianth/Androecial Position	hypogynous; epigynous; perigynous; epiperigynous
Carpel(s) Number	1; 2; 3; 5; 10
Locule(s) Number	1;2;3;4
Placentation	axile; parietal; marginal; free-central; basal; apical
Ovule(s) Number (Per carpel)	1;2;4; numerous (specify approx. number)
Style(s) Number (Per pistil)	1;2;3; 5
Style Position/Shape	terminal; subapical; gynobasic; lateral / terete, flattened
Stigma(s) Shape	capitate; clavate; decurrent; 3-lobed; plumose; terete
Nectary(s) Type/Position	septal; base of ovary; at base of spur

FLORAL FORMULAS: $\mathrm{K}=$ Calyx $\mathrm{C}=$ Corolla $\mathrm{P}=$ Perianth $\mathrm{A}=$ Androecium $\mathrm{G}=$ Gynoecium, superior or inferior ()=fusion

INFLORESCENCE MORPHOLOGY (CALIFORNIA PLANTS)

Amorpha fruticosa Fabaceae:	
A. Inflorescence type:	
B. Inflorescence position:	
Amsinkia menziesii var. intermedia Boraginac.:	
A. Inflorescence type:	
Avena fatua Poaceae: A. Inflorescence type:	
Bahiopsis laciniata S. D. Sunflower Asteraceae:	
A. Inflorescence type:	
B. Infl. parts:	
Brodiaea kinkiensis Themidaceae:	
A. Inflorescence type:	
B. Structure (at "1"):	
C. Structure:	
Foeniculum vulgare Fennel Apiaceae:	
A. Inflorescence type:	
B. Structure:	
C. Structure:	
Lathyrus sulphureus Fabaceae:	
A. Inflorescence type:	
B. Inflorescence position:	
C. Inflorescence structure:	
D. Inflorescence structure:	
E. Structure (flower part):	

Marah macrocarpa Cucurbitaceae:
A. Plant sex:
B. Inflor. type (staminate):
C. Inflor. type (pistillate):

Mimulus aurantiacus Phrymaceae:
A. Inflorescence type:
B. Inflorescence position:

Mirabilis multiflora Nyctaginaceae:
A. Inflorescence type:
B. Infl. structure (subtending fls.):

Penstemon spectabilis Plantaginaceae:
A. Infl. type:

Quercus kelloggii Fagaceae:
A. Inflorescence type:
B. Inflorescence sex:

Salvia mellifera Black Sage Lamiaceae:
A. Inflorescence type:
B. Flower symmetry:
C. Perianth structural type:

Sambucus nigra subsp. caerulea Adoxaceae:
A. Inflorescence type:

Saxifraga bryophora Saxifragaceae:
A. Inflorescence type:

FLOWER MORPHOLOGY (CULTIVATED PLANTS-Spring):

Alliaceae/Themidac. Allium, Dichel. Tulbaghia
A) Perianth cycly:
B) Perianth parts:
C) Perianth fusion:
D) Ovary position:

Apocynaceae Carissa grandiflora
A) Perianth cycly:
B) Perianth type:
C) Leaf arrangement:
D) Stem type (sharp):

Araceae
A) Inflorescence type:
B) Inflorescence bract:
C) Flower sex:
D) Plant sex:

Asteraceae
A) Inflorescence type:
B) Inflorescence bracts:
C) Perianth types:

Balsaminaceae Impatiens
A) Perianth type:

Begoniaceae Begonia
A) Flower sex:
B) Plant sex:
C) No. perianth parts (male):
D) No. perianth parts (female):
E) Ovary position:

Boraginaceae Echium
A) Inflorescence:
B) Style position:
C) Perianth type:

Brassicaceae Brassica, Hirschfeldia, Lobularia
A) Perianth type:
B) Stamen arrangement:

Convolvulaceae Calystegia, Ipomoea
A) Perianth type:
B) Perianth fusion:

Crassulaceae Aeonium, Crassula, Dudleya
A) Stamen cycly:
B) Stamen pos.:
C) Gynoecial fusion type:

Cucurbitaceae Marah
A. Inflorescence type (male):
B. Flower sex:
C. Plant sex:

Ericaceae Arbutus, Xylococcus
A) Perianth type:
B) Anther dehiscence:

Iridaceae Chasmanthe, Iris
A) Inflorescence type:
B) Ovary position:
C) Perianth symmetry:

Lamiaceae Salvia, Leonotis, Rosmarinus
A) Flower symmetry:
B) Perianth type:
C) Style position:

Lauraceae Laurus, Umbellularia
A) Anther cycly:
B) Anther dehiscence type:

Malvaceae Hibiscus, Lavatera
A) Androecial fusion:
B) Carpel number:
C) Stigma shape:

Plumbaginaceae Limonium, Plumbago
A) Perianth type:

Rhamnaceae Ceanothus
A) Sepal posture:
B) Petal posture:
C) Stamen position:

Rosaceae Prunus, Pyrus
A) Ovary position:
B) Perianth/androecial pos.:
C) Flower part:

Solanaceae Nicotiana glauca
A) Perianth symmetry:
B) Perianth type:
C) Ovary position:

Solanaceae Datura
A) Perianth symmetry:
B) Perianth type:
C) Stamen fusion:
D) Ovary position:

FLOWER MORPHOLOGY (CULTIVATED PLANTS-Fall):

Agapanthaceae Agapanthus
A) Inflorescence type:
B) Perianth cycly:
C) Ovary position:
D) Perianth/androecial position:
E) Flower symmetry:

Alliaceae Tulbaghia
A) Perianth cycly:
B) Perianth parts:
C) Perianth fusion:
D) Stamen fusion:
E) Stamen insertion:

Apocynaceae Carissa grandiflora
A) Perianth cycly:
B) Perianth type:
C) Leaf arrangement:
D) Stem type (sharp):

Asteraceae
A) Inflorescence type:
B) Inflorescence bracts:
C) Perianth types:

Balsaminaceae Impatiens
A) Perianth type:

Begoniaceae Begonia
A) Flower sex:
B) Plant sex:
C) No. perianth parts (male):
D) No. perianth parts (female):
E) Ovary position:

Brassicaceae Lobularia maritima
A) Perianth type:
B) Stamen arrangement:

Crassulaceae Aeonium, Crassula
A) Stamen cycly:
B) Stamen pos.:
C) Gynoecial fusion type:

Ericaceae Arbutus, Xylococcus
A) Perianth type:
B) Anther dehiscence:

Haemodoraceae Anigozanthos
A) Inflorescence type:
B) Flower symmetry:
C) Ovary position:
D) Perianth trichome type:

Lamiaceae Leonotis leonurus
A) Inflorescence type:
B) Flower symmetry:
C) Perianth type:
D) Style position:
E) Perianth (outer) vestiture:

Lauraceae Laurus, Umbellularia
A) Anther cycly:
B) Anther dehiscence type:

Lythraceae Lagerstroemia indica Crape Myrtle
A) Perianth type:
B) Perianth/androecial pos.:
C) Corolla merosity:

Malvaceae Hibiscus or Lavatera
A) Calyx aestivation:
B) Corolla aestivation:
C) Androecial fusion:
D) Style no.:

Myrtaceae Eucalyptus sp.
A) Perianth type:
B) Ovary position:
C) Perianth/androecial position:

Plantaginaceae Linaria or Penstemon
A) Perianth symmetry:
B) Perianth type:
C) Stamen arrangement:

Plumbaginaceae Limonium or Plumbago
A) Perianth type:
B) Calyx trichomes:

Rosaceae Raphiolepis
A) Ovary position:
B) Perianth/androecial pos.:
C) Flower part:

Solanaceae Nicotiana or Brugmansia
A) Perianth symmetry:
B) Perianth type:
C) Ovary position:

E. FRUIT AND SEED MORPHOLOGY

Working with another person, complete the answers in this key to specific fruit types.
Fruit derived from a single flower
Fruit derived from a single ovary (pistil) of 1 flower $=$ SIMPLE FRUIT
Pericarp dry at maturity (i. e., at time of seed maturation and dispersal) Fruit winged

1) \qquad
[Note: Many fruit types below may be winged; these may be called a samara or, e.g., a "winged achene."] Fruit not winged
Fruit dehiscent (splitting or opening in a regular manner)

Carpel 1

Fruit dehiscing along a single (ventral) line $\quad \ldots \quad . \quad$ 2)
Fruit dehiscing along two lines
3) \qquad
Carpel 2 or more
Carpels 2; fruits dehiscent along 2 lines, w/ persistent central septum (replum) bearing seeds Fruit about as long as broad
4)

Fruit 2X or more longer than broad $-\cdots-$
5)

Carpels 2 or more; fruits lacking a persistent central septum
Fruit splitting into 2 or more mericarps enclosing seed(s) at time of splitting _6)
6)
[Note: The mericarp may be identified as a specific unit fruit type; e. g., a "schizocarp of follicles."]
Fruit not splitting into mericarps
Fruit dehiscing by pores \qquad
\qquad
Fruit dehiscing by lines
Lines of dehiscence transversely oriented
Lines of dehiscence vertically oriented
Lines of dehiscence opposite locules
Lines of dehiscence along septa \qquad
\qquad
-
Fruit indehiscent
Seed coat fused completely to pericarp
11)

Seed coat not fused to pericarp
Pericarp moderately hard; seed attached to pericarp at one point Pericarp inflated, bladder-like (i.e., pericarp large in relation to seed)
12)

Pericarp not inflated or bladder-like (i.e., pericarp ca. same size as seed)
13)

Pericarp very hard; seed attached to pericarp at one or more points
14)

Pericarp fleshy at maturity (i. e., at time of seed maturation and dispersal)
Endocarp hard and stoney
15)

Endocarp not hard and stoney
Ovary superior; endocarp with juice sacs (swollen liquid-filled trichomes)
16)

Ovary superior or inferior; juice sacs absent
Ovary inferior; exocarp leathery \& placentation parietal or endocarp cartilaginous \& plac. axile
Exocarp leathery and placentation parietal
17)

Endocarp cartilaginous and placentation axile
18)

Ovary superior or inferior; pericarp fleshy, but not a pepo nor a pome
19)

Fruit derived from several ovaries (pistils) of 1 flower = AGGREGATE FRUIT. Some types:
Unit fruit fleshy at maturity, with a hard endocarp and fleshy mesocarp 20) \qquad
Unit fruit dry at maturity
Unit fruit indehiscent, 1-seeded .. 21)
22) \qquad
Unit fruit dehiscent, with one line of dehiscence
22)

Fruit derived from more than 1 (usu. several) flowers = MULTIPLE FRUIT. Some types:
Unit fruits fleshy, laterally fused, arising along a common central axis
Unit fruits not fused, born inside a fleshy compound receptacle with an apical pore ... 24) \qquad

FRUIT AND SEED EXAMPLES

Aceraceae Acer macrophyllum Big-Leaf Maple
A) Fruit type:
B) Dispersal mechanism:

Actinidiaceae Actinidium chinensis Kiwi
A) Fruit type:
B) Ovary position:
C) Carpel number:

Agavaceae Hesperoyucca whipplei Chaparral Yucca
A) Fruit type:
B) Fruit dehiscence:
C) Ovary position:
D) Carpel number:
E) Seed shape:

Anacardiaceae Mangifera indica Mango
A) Fruit type:

Apiaceae Foeniculum vulgare Fennel
A) Fruit type:
B) Fruit unit:
C) Structure between fruits:

Apocynaceae Asclepias cordifolia Milkweed
A) Fruit type:
B) Seed surface (vestiture):
C) Dispersal mechanism:

Arecaceae Cocos nucifera Coconut
A) Fruit type:
B) Pericarp layers:
C) Name white flesh, milky fluid:
D) Dispersal mechanism:

Asteraceae Helianthus annuus Sunflower
A) Fruit type:
B) Fruit development:

Asteraceae Xanthium sp. Cocklebur
A) Fruit type:
B) Accessory part:
C) Dispersal mechanism:

Brassicaceae Arabis perennans
A) Fruit type:
B) Name of central septum (partition):
C) Carpel number:

Brassicaceae Capsella bursa-pastoris Shep's Pur.
A) Fruit type:

Bromeliaceae Ananas comosus Pineapple
A) Fruit type:
B) Fruit development:
C) Ovary position:

Caricaceae Carica papaya Papaya
A) Fruit type:
B) Placentation:

Cucurbitaceae Cucumis/Cucurbita Cucumber/squash
A) Fruit type:
B) Placentation:
C) Ovary position:

Fabaceae Acacia, Erythrina. Pisum, Senegalia, etc..
A) Fruit type:
B) Number of lines of dehiscence:
C) Carpel number:

D Placentation:
Fabaceae Arachis hypogaea Peanut
A) Fruit type:

Fagaceae Quercus sp. Oak
A) Fruit type:
B) Accessory structure, base of fruit:

Juglandaceae Juglans regia Walnut
A) Fruit type:
B) Accessory tissue:

112
Lamiaceae Leonotis leonurus Lion's Mane
A) Fruit type:
B) Style position:

Magnoliaceae Magnolia grandiflora Fl. Magnol.
A) Fruit development:
B) Fruit type:
C) Red, fleshy covering of seeds:

Moraceae Ficus sp. Fig
A) Fruit type:
B) Fruit part:

Musaceae Musa paradisiaca Banana
A) Fruit type:
B) Ovary position:
C) Carpel number:
D) Pericarp layers:

Myrtaceae Eucalyptus sp. Eucalyptus
Fruit type:
Papaveraceae Papaver sp. Poppy
A) Fruit type:

Platanaceae Platanus racemosa Calif. Sycamore
Fruit development:
Fruit type:
Poaceae Zea mays Corn
A) Fruit development:
B) Fruit type:

Rosaceae Fragaria X ananassa Strawberry
Fruit development:
Fruit type:
Accessory tissue:

Plant Systematics Laboratory Manual
Rosaceae Malus pumila Apple / Pyrus sp. Pear
A) Fruit type:
B) Placentation:
C) Ovary position:
D) Accessory tissue:
E) Dispersal mechanism:

Rosaceae Prunus persica Peach
A) Fruit texture:
B) Fruit type:
C) Pericarp layers:

Rosaceae Rubus sp. Blackberry/Raspberry
A) Fruit type:

Rutaceae Citrus sp. Orange, Grapefruit
A) Fruit type:
B) Locule number:
C) Placentation:
D) Pericarp layers:

Solanaceae Nicotiana glauca Tree Tobacco
A) Fruit type:
B) Carpel number:
C) Seed surface:

Solanaceae Physalis Tomatillo
A) Fruit type:
B) Accessory tissue:

Solanaceae Solanum esculentum Tomato
A) Fruit type:
B) Ovary position:
C) Placentation:

Vitaceae Vitis sp. Grape
A) Fruit type:
B) Ovary position:

SEED AND SEEDLING MORPHOLOGY
Bean (Phaseolus vulgaris): Observe seed coat and embryo (noting that endosperm is absent). The embryo consists of two large cotyledons, the radicle (embryonic root), the hypocotyl (between the cotyledons and radicle), and the epicotyl (embryonic shoot). Note the transformation of these structures from seed to seedling stage. The cotyledons are lifted above the ground on the hypocotyl (called "epigeal" germination) and eventually wither away. Is bean a dicot or monocot? Draw and label the seed.

Corn (Zea mays): Observe outermost pericarp (fruit wall), seed coat, endosperm, and embryo. The embryo consists of one cotyledon, a radicle (contained within the coleorhiza), and the epicotyl (contained within the coleoptile). Note the transformation of these structures from seed to seedling stage. The cotyledon and seed coat remain in the ground (called "hypogeal" germination). Is corn a dicot or monocot? Draw and label the seed.

If available, observe various seeds with different types of seed coats, including seeds that have: 1) wings; and 2) a sarcotesta (fleshy layer). Also, observe seeds that are arillate, i. e., with arils, which is an outer, fleshy layer additional to the seed coat proper.

FRUIT MORPHOLOGY

Foeniculum vulgare Fennel Apiaceae. Take a single unit fruit and examine under a dissecting scope. Note that these fruits split open at maturity. 1) Draw and label. 2) What is the fruit type? 3) What is the name of each of the fruit halves? 4) What is the name of the stalk that attaches to each of these halves?

Fragaria sp. Strawberry Rosaceae. Take a single strawberry and observe the parts. Note the calyx below and, if you look carefully, persistent, withered stamens between the calyx and the fruit. Section the strawberry longitudinally to see the greatly expanded receptacle tissue. Observe the surface of the strawberry under a dissecting scope. 1) Draw and label a single pistil and note the style and stigma. Remove a few pistils and dissect, noting the single seed within. 2) What is the fruit type? 3) What is the name of the swollen, fleshy tissue (99% of the fruit volume)?

Lobularia maritima Sweet Alyssum Brassicaceae (or other member of the Brassicaceae). Remove the fruits and observe under a dissecting scope. Carefully make a cross-section with a razor blade to note the central replum (mature septum in fruit) and two locules. For mature fruits, note that the replum persists after the two valves detach. 1) Draw and label a fruit. 2) What is the fruit type? 3) What is the name of the persistent septum?

Plantago sp. Plantain Plantaginaceae. Look at the fruit under a dissecting scope and note the transverse line of dehiscence, characteristic of a circumscissile capsule. 1) Draw and label. 2) What is the fruit type?

Platanus sp. Sycamore Platanaceae. Observe the multiple fruits of this taxon. Pull off a single unit fruit and dissect, noting that it is one-seeded, dry and indehiscent. What is this unit fruit called? What is the multiple fruit called? 1) Draw and label. 2) What is the fruit type?

Rubus sp. Raspberry, Blackberry Rosaceae. Observe one of the unit fruits (derived from one pistil) under the dissecting scope. 1) Draw and label a unit fruit, noting the style and stigma. 2) What is the fruit type?

Salvia sp. or Leonotus leonuris Lamiaceae. Note the inflorescence type, a verticillaster. Pull off several calyces from the base and place under a dissecting scope. Carefully dissect these zygomorphic calyces to find 4 schizocarpic nutlets inside. The nutlets have probably fallen off; thus, an individual calyx may bear only a single nutlet. 1) Draw and label. 2) What is the fruit type? 3) What is the term of the unit of each fruit?

FRUIT \& SEED MORPHOLOGY

	SPECIES \#1:	SPECIES \#2:
Fruit Origin/Development		
Fruit Texture		
Fruit Dehiscence (+/-;\#;Pos.)		
Fruit Structural Type		
Fruit Color/Size		
Fruit Shape		
Fruit Surface		
Funiculus Size/Shape		
Seed Color/Size		
Seed Shape		
Seed Surface		
Seed Type (Nutritive Tissue)		
Aril (+/-), Size/Shape/Pos.		
Embryo Type (Size/Shape/Pos.)		
Cotyledon Position		
Radicle Position		
Seedling Type		

Draw and label the fruit, seed, and seed parts.
FRUIT AND SEED MORPHOLOGY: EXAMPLES

Fruit Origin/Development	simple; aggregate; multiple; accessory
Fruit Texture	dry; fleshy
Fruit Dehiscence (+/-;\#;Pos.)	indehiscent; dehiscent: 2 longitudinal lines of deh.
Fruit Structural Type	septicidal capsule; drupe; follicetum; sorosis; hip
Fruit Color/Size	green; yellow / 2-3 cm long; $8-9$ mm long, 2 mm wide
Fruit Shape	ovoid; ellipsoid; spherical; pyriform
Fruit Surface	farinaceous; glabrous; pubescent; tomentose; viscid
Funiculus Size/Shape	funiculus 1-2 mm long, narrow, curved
Seed Color/Size	dark brown; yellow / 1.1-1.7 mm long; 2.5 cm long
Seed Shape	discoid; ellipsoid; fusiform; lenticular
Seed Surface	comose; glabrous; scabrous; verrucose
Seed Type (Nutritive Tissue)	cotylespermous; endospermous
Aril (+/-), Size/Shape/Pos.	seeds arillate, aril small, basal
Embryo Type (Size/Shape/Pos.)	lateral; linear; rudimentary
Cotyledon Position	lateral
Radicle Position	basal
Seedling Type	epigeous; hypogeous

F. PLANT MORPHOLOGY TERMINOLOGY EXERCISE

Obtain a plant flora from a local region or of cultivated plants. For each character below, list one character state from a description in that flora, indicating the taxon name and page number.

GENERAL CHARACTERS

	Character state	Taxon	Page no.
COLOR / Color Color Pattern			
SIZE / Size			
NUMBER / Number			
Cycly			
Merosity			
TEXTURE / Texture			
FUSION			
General Fusion SHAPE			
Shape: Solid Shape: Plane			
Base			
Margin			
Apex: Shape			
Apex: Apical Process			
Division			
DISPOSITION			
Position Arrangement			
Orientation			
Transverse Posture			
Longitudinal Posture			
Twisting / Bending Posture			
VENATION / Venation			
SURFACE			
Configuration Epidermal Excrescence			
Vestiture			
Trichome Types			
Bristle Types			
SYMMETRY / Symmetry			

Character state
Taxon
Page no.

TEMPORAL PHENOMENA			
Duration Maturation			
Periodicity			

PLANT STRUCTURE CHARACTERS: VEGETATIVE
Character state
Taxon
Page no.

ROOTS			
Plant Parts Plant Habit			
Root Parts			
Root Type			
STEMS/SHOOTS			
Twig Structures Bud Types			
Stem parts: Bark			
Stem Branching Pattern			
Stem Habit			
Stem / Shoot Type			
LEAVES			
Leaf Parts Leaf Type			
Leaf Attachment			
Leaf Structural Type			

PLANT STRUCTURE CHARACTERS: REPRODUCTIVE
Character state
Taxon
Page no.

INFLORESCENCES			
Inflorescence Parts Inflorescence Position			
Inflorescence Development			
Inflorescence Types			
FLOWERS			
Flower Parts Flower Sex			
Plant Sex			
Flower Attachment			
Floral Cycly Perianth Cycly			
Perianth Merosity			
Perianth Symmetry			
Aestivation			

Character state		Paxon no.	
FLOWERS (continued)			
Perianth Fusion			
Perianth Parts			
Perianth (\&Hypanthium) Type			
Stamen / Androecium Parts			
Stamen / Androecium Types			
Stamen Arrangement			
Stamen Position			
Stamen Cycly			
Stamen Attachment			
Stamen Insertion			
Stamen / Androecial Fusion			
Anther Parts			
Anther Attachment			
Anther Dehiscence Type			
Anther Dehiscence Direction			
Gynoecium/Carpel Parts			
Gynoecial Fusion			
Placentation			
Style Position			
Ovary Position			
Perianth/Androecial Position			
Ovule Parts			
Ovule Types			
Ovule Position			
FRUITS			
Fruit Parts			
Fruit Types			
SEEDS			
Seed Parts Seed (Endosperm) Types			

Plant Systematics Laboratory \#10 PLANT ANATOMY AND PHYSIOLOGY

Cells and Organelles:

Chloroplasts: Place a small leaf of the aquatic plant Elodea in a drop of water on a slide and cover with a cover glass (known as a "wet mount"). Note an individual cell with $\underline{1}^{\circ}$ cell wall, a large central vacuole (the membrane of which is usually invisible), and peripheral chloroplasts. Note the cytoplasmic streaming (cyclosis). Draw.

Chromoplasts: Make a wet mount (unstained) of a small piece of a yellow flower petal. Observe under high (40x) magnification and draw the chromoplasts, containing variably shaped carotenoid deposits that impart color to the petal. Draw.

Amyloplasts (starch grains): Tease a small piece of potato (Solanum tuberosum) both in a drop of water and in a drop of IKI and mount with a cover slip (or observe ground meristem of Piper stem xs). Observe the lamellate starch grains, often having a distinctive morphology for each species. The IKI solution stains starch blue to black in color. Draw.

Crystals:

Observe calcium oxalate crystals in the form of druses (pith \& cortex of Aristolochia 1-yr. stem) and needle-like raphides (ground meristem of Cordyline yg. stem 1.s.). What is their function? Draw.

Vacuoles:

Observe tissue from a purple-colored plant part. Note that the cells are completely filled with a vacuole, which contains either anthocyanins or betalains. Draw.

CELL TYPES

Make a hand cross-section of celery (Apium graveolens) petiole. Stain with 0.05% toluidine blue. Note:
Parenchyma: From the celery cross-section observe the mostly transparent, live cells comprising most of the tissue of the petiole. Look for nuclei and (in outer tissues) chloroplasts. Draw.

Collenchyma: From the celery cross-section observe the cells grouped near the periphery of the petiole having the white-glistening, unevenly-thickened cell wall. What compounds infuse the cell walls? What is the function of these cells? Draw.

Sclerenchyma:

Fibers: From the celery cross-section observe note the fiber bundles occurring to the outer side of the vascular bundles. Note the thick, secondary cell walls of these fibers. What is their function? Draw.

Observe the prepared slide of macerated fiber cells (Yucca smalliana peduncle-macerated). Note that they are thin, very elongate cells with tapering end walls and thick, secondary cell walls. Draw.

Sclereids: Observe a preparation of cells from the flesh of pear (Pyrus communis fruit). Note the sclereids, which have a thick, secondary cell wall with numerous simple pits. Sclereids give the gritty taste to pears. Draw.

Vessel elements: Look at the prepared slide of vessel elements (Quercus alba macerated wood). Note that they look like little hollow tubes, with perforation plates at each end. Observe the small pits (what is a pit?) on the side walls. Try to find vessel elements that are still attached end to end (to form a vessel). What is the function of these cells? Draw.

Sieve tube members: Look at the prepared slides of sieve tube members (Salix stem XRT, phloem/xylem). Note that side walls contain groups of callose-lined pores (sieve areas) and end walls have bands of larger pores (sieve plates). Try to find sieve tube members that are attached end to end (forming a sieve tube). What is the function of these cells? Draw.

Epidermis: Observe the cross-section of a Cycas leaf and note the epidermis, with a thick, outer cuticle region. With what is a cuticle impregnated? What is its function? Draw.

Stomates: Make a wet mount of an epidermal peel of the lower epidermis of availabe material (e. g., Coleus, Commelina, or Zebrina. Observe the stomates (= stomata), containing two guard cells which control the opening (stoma). These are the only epidermal cells with chloroplasts. Draw.

Laticifers: Observe the live material and the stem longitudinal sections of Euphorbia sp., a plant with a milky latex. Observe in the slide the laticifers, cells that function in secreting latex. What is the function of latex?

Draw.

Resin ducts: Observe the stem cross section only (appearing round on the slide) of Pinus stem X,R,T sect. Note the resin ducts interspersed in the wood. These ducts are lined with epithelial cells that secrete resin into the cavity of the duct. Draw.

Laticifers: Observe Euphorbia stem ls (green box). Note, in this stem longitudinal section, the tube-shaped laticifers interspersed in the cortex. These are the specialized cells that secrete latex, economically important as the source of, e. g., rubber. Draw.

Tannin cells: Observe the Sambucus stem c. s. Note the dark tannin cells interspersed in pith region.

Oil cells: Observe the Citrus fruit c.s. \&/or a cross-section of a schizocarp of fennel. Oil cavities are prevalent at the periphery of the pericarp in both. Draw.

PLANT ORGANS AND TISSUES

Root:

Root types: (observe)
Pistia stratiotes WATER LETTUCE or Hydrocharis morsus-ranae FROG BIT: Note rootcap, root hairs, and $1^{0} \& \underline{2}^{0}$ roots

Orchid: Note aerial roots
Zea mays CORN: Note prop roots . What is their function?

Root growth: Look at the prepared slide of a root longitudinal section (e. g., Ranunculus or Elodea root tip). Note the root cap and apical meristem (region of cell division). Observe that cells elongate as they mature (region of cell elongation). Check off terms of ROOT handout.

Root mature structure: Look at the root cross-section of a eudicot (e. g., Ranunculus older root mat. metaxylem) [optionally, of a monocot, e.g., Smilax mature root]. Note epidermis, cortex (with starch grains), endodermis, pericycle, xylem, and phloem. In particular, note the suberized Casparian strips of the non-lignified endodermis. What is their function? In eudicots the xylem is structured as fluted ridges (appearing as "arms"); in monocots there are numerous xylem "arms" and a central, lignified pith region. Phloem strands alternate with xylem "arms" in both dicots and monocots. Check off terms of ROOT handout.

Shoot:

Look at the prepared slide of a shoot longitudinal section (Coleus stem tip). Note apical meristem, leaf primordia, bud primordia, and young vasculature. Check off terms of SHOOT handout.

Stem:

Make a hand-section or observe a prepared slide of a dicot stem, e. g., Coleus and stain with 0.05% toluidine blue (or use prepared slides of Helianthus mat. stem). First, note the tissue regions: epidermis, cortex, single ring of vascular bundles, and pith. The epidermis contains a thick, suberized cuticle. Just beneath the epidermis are 3-4 layers of collenchyma, characterized by having pectic-rich (appearing glistening white), unequally thickened cell walls. Note, from the l.s. that these are elongate cells, functioning in structural support. The bulk of the cortex is parenchyma cells, including the peripheral chloroplast-containing chlorenchyma. The vascular bundles contain xylem to the inside and phloem to the outside. The xylem is comprised of lignified tracheary elements (vessels and/or tracheids); phloem is made up of non-lignified sieve tube members and companion cells. Fibers are located in groups touching and to the outside of the phloem, in "bundle caps." Check off terms of STEM handout.

Make a hand cross-section or observe a prepared slide of a monocot stem, e. g., Commelina or Zea. Stain with IKI and note the starch grains present in the parenchyma cells. Note the numerous, scattered vascular bundles. Each bundle maintains the orientation of xylem and phloem. The vascular bundles tend to have a large lacuna (hole) where the xylem first differentiates ("protoxylem"). Check off terms of STEM handout.

Leaf:

Observe the prepared slide leaf cross-section of Ligustrum. Note upper epidermis, palisade mesophyll, spongy mesophyll, lower epidermis (with stomata), and vascular bundle (vein). The vascular bundle contains phloem below and xylem above (when the slide is correctly oriented). Check off terms of LEAF handout. Wood anatomy:
Wood is technically 2° xylem, derived from the vascular cambium.

Observe the demonstration of different cuts of wood:
Transverse (Cross) -- Identify annual rings, pores (vessels), rays.
Radial -- Note that annual rings are still visible and that rays appear as horizontal lines or bands.
Tangential -- Note that annual rings (because cuts are not perfectly even) appear as dark wavy loops and that rays appear as short vertical lines.Note the ring-porous wood of OAK

PINE (Pinus sp.) stem cross-section

Note $\underline{2}^{0} \underline{x y l e m}, \underline{2}^{0}$ phloem, annual rings, rays, tracheids, and resin canals. How old is this stem? Draw.
PINE (Pinus sp.) wood XRT
Be able to distinguish between and identify the type of cut of the three types of sections. Identify $\underline{2}^{0} \underline{x y l e m}$, annual rings, tracheids with circular bordered pits, rays, and resin canals in all three sections. (The resin canals are lined with epithelial cells that secrete resin into the cavity of the canal.) Draw.

BASSWOOD (Tilia sp.) stem cross-section
Note $\underline{2}^{0}$ xylem, $\underline{2}^{0}$ phloem, annual rings, rays, vessels, fibers. How old is this stem? Draw.
BASSWOOD (Tilia sp.) wood XRT
Be able to distinguish between and identify the type of cut of the three types of sections. Identify $\underline{2}^{0} \underline{x y l e m}, \underline{2}^{0}$ phloem, annual rings, rays, vessels, and fibers in all three sections. Draw.

Dendrochronology:

Count the number of annual rings of the sectioned \log on demonstration. Note that the wood to the outside is lighter sapwood, that toward the center is darker heartwood (because of deposition of tannins, resins, lignin, and/or gums). Note also that the width of annual rings varies. The wider the ring, the greater amount of growth during that year. Annual rings to the center of the stem tend to be wider, as growth is generally greater in the sapling stage. Annual rings will also be wider during favorable conditions (e.g., plentiful rainfall, sunlight, etc.). Thus, a history of climate can be deduced from the wood. From samples of wood of the southwestern U. S., this has been used in confirming sunspot cycles.

Paper:

Note specimens of PAPYRUS (Cyperus papyrus), an ancient source of paper. Flax (Linum usitatissimum) is also used to make paper, esp. cigarette papers and bank notes.

Today, 90% of all paper is derived from wood ($2^{\mathrm{O}} \mathrm{xylem}$) pulp. Take a very small piece of newspaper and make a wet-mount microscope slide, teasing the paper apart in a drop of water. Draw. Note that paper is composed of a mat of "fibers," which can be true fiber cells, tracheids, or vessels (usually tracheids). If these are tracheids, can you see the circular bordered pits?

Cork:

Cork is derived from the outer bark of Quercus suber, the CORK OAK tree. Make a thin cross-section of a cork and prepare a wet-mount. Note the cubical cells, devoid of any living contents. (Robert Hooke first coined the term "cell" from observing cork tissue.) All that remains is the cell wall, which is heavily impregnated with suberin, a very water resistant compound. Draw.

WOOD FORENSICS

The Case

A crime has been committed ... the vicious murder of Jack McCaw.
You are a famous, Nobel prize-winning botanist, an expert in wood and plant fibers. The police bring you samples to identify that may help to nab the criminal.

The First Sample

The first sample is a tiny fragment of wood, found in the skull of the murder victim. Determining the identity of this wood could be vital to identifying the murder weapon ... and the murderer!

From the sample of wood given to you (already XRT sectioned by your lab technician), determine the plant genus, using the key below. Then, verify your answer with named samples of the wood.

1. Wood porous, = with vessel elements (having perforation plates), lacking circular bordered pits
2. Wood ring porous (having large vessels in spring wood, small ones in summer wood)
3. Wood rays both multiseriate (with ∞ vertical columns of cells) and uniseriate
(with 1 column of cells) . Quercus (oak)
3^{\prime} Wood rays mostly biseriate, = having 2 vertical columns of cells Fraxinus (ash)
2^{\prime} Wood not ring porous; vessels in spring and summer wood of similar size Salix (willow)
1' Wood non-porous, = lacking vessels, having only tracheids, with circular bordered pits
[Note: resin canals can falsely appear to be vessels but are not conductive.]
4. Wood with numerous resin canals; rays mostly uniseriate, some multiseriate and associated with
resin cells . Pinus (pine)
4' Wood without resin canals; rays mostly 1-2-seriate . Sequoia (redwood)
From this information, infer the murderer, given this information:
A. Professor Plum possesses a cane, inherited from his father, made of solid oak.
B. Mister Green has a collection of baseball bats, made of ash.
C. Colonel Mustard has in his possession a club made of pine wood.
D. Misses Peacock has a hand-carved Indian relict, made of willow wood.
E. Miss Scarlet has a fine vase, made of beautiful redwood.

You testify in court, presenting the evidence. Who is implicated as the murderer?

ADDENDUM:

Material dissection and preparation:

A wealth of information can be gained by careful dissection and observation of plants. Look first at the outer form of the plant, noting the basic plant organs (root, stem, leaves, buds, flowers, fruits) and specific aspects of these organs. Gently pull apart the plant organs to better see their morphology. For flowers and fruits, use both your hands and naked eye and dissecting needles under a dissecting scope to examine the components.

Careful anatomical studies usually involves time consuming embedding and microtome sectioning. However, a simple technique of hand sectioning with a razor blade will allow you to see considerable detail of cell and
tissue anatomy. Stout material, such as an herbaceous stem, can be held upright in the left hand between thumb and index finger (assuming you are right-handed). More flimsy material, such as a leaf, can be sandwiched between two small pieces (cut only slightly larger than the material) of styrofoam; the end is moistened and both styrofoam and plant material are sectioned together. In either case, rest the side of the razor blade on your index finger and position your thumb a bit lower (so that if you do slip, you won't cut yourself). There are tricks of the trade to successful sections:

1) As you cut, move the razor blade toward you, as well as across the material; thus, the cut is somewhat diagonal.
2) Make an initial cut to level off (discarding this piece) and then make several thin slices, keeping the sections on the razor blade until they get too crowded; then, transfer the sections to water in a Syracuse dish or petri plate. Clean your razor blade and make a few more sections.
3) Select the thinnest sections, pull out with a brush, and place in a few drops of stain in another dish. After staining, rinse your sections very briefly in water and place in a drop of water or (for a semi-permanent mount) 50% glycerol. Cover with a cover slip, avoiding air bubbles and adding more fluid to the side if necessary.
Most important is to make those sections THIN!! Although you will want at least one complete section, other sections may be partial, as long as they are thin. Clean your razor blade afterward and you may reuse it.

For tough, fibrous or woody tissue place lie the material down on a plastic petri plate and make downward slices with your razor blade. This same technique can be used with softer, small plant material if it is sandwiched between two layers of Parafilm and the material sectioned in a "dicing" motion.

The following are some "vital" stains (i.e., used with live material):

Stain	Compound for which stain is specific	Color
Alcian blue	Pectins	Blue
Aniline blue	Callose	Blue (UV-fluoresces Yellow)
IKI	Starch	Blue to black
Phloroglucinol/ $/ \mathrm{HCl}$	Lignin	Red (NOTE: Takes sev. mins. to react)
Sudan III or Sudan IV Toluidine blue	Oil droplets	Reddish
	Metachromatic (will stain a variety of cell walls different shades of blue/green):	
	Lignified tracheary elements	Dark blue
	Sclerenchyma	Blue to blue-green
	Parenchyma	Light blue
	Collenchyma	Reddish-purple
	Sieve tubes and companion cells	Greenish
	Callose/Starch	Unstained

Drawings: Making careful drawings not only gives you a record of what you observe, it also helps you become a careful observer. When "forced" to draw it, you often see more than you otherwise would. Make drawings with a \#2 or \#3 hard lead pencil. Draw the outlines of organs or tissues (e. g., of a root crosssection) at low magnification to record the overall structure. Then draw a portion of the whole (e. g., a "pie slice of the root section, showing some of the individual cells of a vascular bundle) to show details.

Plant Systematics Laboratory \#11
 PLANT EMBRYOLOGY

Equipment \& supplies needed:

Compound microscope (preferably phase contrast or D.I.C.)
Syracuse dish
Dissecting needles
Fine forceps
Scalpel, w/ \#11 blade
Microscope slides
Cover slips (squares or circles)
Kimwipes
Felt-tip pen, rapidograph, or diamond scribe (for marking slides)
Paper and pencil (2H)
Dropper bottles:
Herr's Clearing Solution
Stock bottles:
F.A.A. [5% formalin (commercial strength), 5% acetic acid (glacial), 63% ethanol]
Ethanol-70\%
Ethanol-95\%

Ovule Clearings:

Ovules must be individually removed from the ovary or a flower in order to observe histological and positional details. Flowering material may be dissected live or fixed beforehand in F.A.A. for 24-48 hours. (Replace F.A.A. with 70% ethanol after fixation.) Dissect in Syracuse dish while viewing under a dissecting scope, using needles, forceps, and scalpel. Place flower in a dish filled with 95\% ethanol and detach the ovary. Carefully tear open the side of the ovary (from top or bottom) with forceps to expose the ovule(s); avoid damaging the ovule(s). Observe placentation, ovule type (if apparent), and ovule position; record information. Place the opened ovary on a small drop of ethanol on a microscope slide (Don't let dry out!). Detach the ovule(s) from the base of the funiculus with forceps or needle. (With patience and skill in dissecting, even the tiniest ovules can be successfully removed.)

Place two cover slips on either side of the ovule(s). Drain most of the ethanol (or allow to evaporate). Immediately, place 1-2 drops of Herr's Clearing fluid (Herr, 1971, 1982) directly on the ovule(s). Cover ovule with a third cover slip, which rests on the edges of the other two. This arrangement prevents the ovule from being squashed. Add more Herr's solution from the edge, as needed.

After ca. 5 minutes, place slide under brightfield, phase contrast, or D.I.C. microscope and observe.
Note:

1) Placentation (axile, parietal, basal, apical, free-central, apical-axile, parietal-septate, laminar)
2) Ovule position (hypotropous, epitropous, pleurotropous; dorsal or ventral)
3) Ovule type (anatropous, orthotropous, or campylotropous \& subtypes).
4) Number of integuments (unitegmic or bitegmic).
5) Number of cell layers per integument (1, 2, or more).
6) Micropyle type (amphistomal, exostomal, endostomal, or unistomal).
7) Vasculature traversing funiculus into nucellus.
8) Details of embryo sac (this usually requires careful and considerable observation).

Possible taxa to investigate:

Armeria maritima [Caryophyllales, Plumbaginaceae]:
Aptenia cordifolia [Caryophyllales, Aizoaceae]:
Centranthus ruber [Dipsacales, Valerianaceae]:
Eriogonum fasciculatum [Caryophyllales, Polygonaceae]:
Erythrina sp. [Fabales, Fabaceae]:
Euryops pectinata [Asterales, Asteraceae]:
Hedera helix [Apiales, Araliaceae]:

Malacothamnus fasciculatus [Malvales, Malvaceae]:
Pereskia grandiflora [Caryophyllales, Cactaceae]:
Phormium tenax [Asparagales, Phormiaceae]:
Salvia mellifera [Lamiales, Lamiaceae]:

Pollen Tube Growth

Carefully remove the style of a pollinated flower (e. g., a composite). Place the style in a couple of drops of aniline blue stain. Cover with a cover slip and slightly squash. Observe under the fluorescent microscope. Aniline blue is preferential for callose, which is deposited in the pollen tubes. Pollen tubes appear bright yellow under fluorescence microscopy. Observe.

Female Gametophyte (Embryo Sac) Development

Observe the mature female gametophyte of Phormium tenax and of the prepared slides of Lilium, noting the 3 antipodal cells, 2 polar nuclei, and 3 cells of the egg apparatus. If time permits, observe earlier developmental stages. Draw.

Embryo morphology:

Dissect out embryos or clear small seeds of a given species and observe under brightfield, phase contrast, or D.I.C. microscopy. Draw.

Taxa: Capsella bursa-pastoris Shephard's Purse or Lepidium sp. Peppergrass (both Brassicaceae)

Dicot:

Seed morphology:

Bean (Phaseolus vulgaris): Observe seed coat and embryo (noting that endosperm is absent). The embryo consists of two large cotyledons, the radicle (embryonic root), the hypocotyl (between the cotyledons and radicle, and the epicotyl (embryonic shoot). If available, note the transformation of these structures from seed to seedling stage. The cotyledons are lifted above the ground on the hypocotyl (called "epigeal" germination) and eventually wither away. Draw the seed:

Monocots:
Corn (Zea mays) grain: Observe outermost pericarp (fruit wall), seed coat, endosperm, and embryo. The embryo consists of one cotyledon, a radicle (contained within the coleorhiza), and the epicotyl (contained within the coleoptile). If available, note the transformation of these structures from seed to seedling stage. The cotyledon and seed coat remain in the ground (called "hypogeal" germination). Draw the seed:

Plant Systematics Laboratory \#12
 PALYNOLOGY

Equipment \& supplies needed:

Compound microscope (brightfield, phase contrast, or D.I.C.)
Dissecting needles
Fine forceps (optional)
Microscope slides
Cover slips (22 X 22 squares \& 18 circles)
Kimwipes
Paper and pencil (2H)
Felt-tip pen, rapidograph, or diamond scribe (for marking slides)
Dropper bottles:
F.A.A. [5\% formalin (commercial strength), 5\% acetic acid (glacial), 63\% ethanol]

Ethanol-70\%
Basic Fuchsin (in 50\% glycerol)
Glycerol - 50\%
Herr's Clearing Solution
Acetocarmine
IKI
Sudan IV (or Sudan III)

Pollen grain observation: Pollen grains may be observed under brightfield microscopy by teasing apart anthers in a drop of Basic Fuchsin (in 50% glycerol) on a microscope slide. (Live or fixed material may be used.) After teasing out pollen grains, remove any large anther fragments, place a cover slip on the slide, and observe under the microscope. Basic fuchsin stains the outermost exine layer of the pollen grain, allowing for better visualization of structural detail. (IMPORTANT: Be sure to decrease the condenser aperture opening in order to obtain the best contrast.) Optional: You may also wish to mount pollen grains in 50% glycerol (without the basic fuchsin stain) or in Herr's clearing solution (preferably fixed briefly in F.A.A. or alcohol beforehand) and observe with a phase contrast or D.I.C. microscope. Note the following in your pollen grain samples:

1) Pollen unit (monad is most common; look for tetrads, polyads, or pollinia).
2) Pollen grain shape and size (need an ocular micrometer for the latter).
3) Wall sculpturing (e.g., verrucate, reticulate, echinate, psilate, rugulate).
4) Number, type, and arrangement of aperuture(s) (e.g., tricolpate, tricolporate, monoporate, monosulcate).
5) Pollen kit (yellowish or orange carotenoid-like material adhering to exine; functions in pollen dispersal).

Pollen grain nuclear number and storage product: The number of nuclei present in a pollen grain at the time of pollen release may be a valuable taxonomic character. Pollen grains are usually binucleate, containing one tube cell (consisting of a spherical nucleus with the bulk of the pollen grain acting as the cell) and one generative cell (usually crescent-shaped). In some taxa the mature pollen grains are trinucleate, vis-à-vis the precocious division of the generative cell into two sperm cells.

Dissect pollen grains of available material in a drop of acetocarmine solution, which stains DNA
(and therefore nuclei) a red color. Observe whether the grains are binucleate or trinucleate.
Pollen grains store either starch or oil as the energy reserve, a feature that may be taxonomic significant.

To detect starch, dissect pollen grains in a drop of IKI, add a cover slip, and observe. IKI stains starch grains a black to dark blue color. To detect oils, dissect pollen grains in a drop of either Sudan IV or Sudan III, which stains oil a deep red.

Pollen grain germination: Dissect pollen from available live material in a drop or two of growth medium. Do not allow to dry out! Cover with a cover slip. After 30 minutes to 3 hours, check under the microscope for pollen tube germination. Attempt to identify the tube nucleus and generative nucleus.

Place the stigma(s) and apical part of the style(s) in a drop of 1% Aniline blue. (Live or fixed material may be used.) Cover with a cover slip and observe under fluorescence microscope. Aniline is specific for callose, which fluoresces brightly. (Other components, such as the exine wall and stigma papilla may fluoresce as well, but not as brightly.) You may observe the course of the pollen tube through the style with this technique.

How is this technique valuable in studies of reproductive biology?
Pollen grain viability: Stain pollen with cotton blue in lactophenol. Live pollen stains dark blue; dead pollen stains light blue or clear. How is this technique valuable in studies of reproductive biology?

Possible taxa to investigate: (Draw)

Amaryllidaceae or Liliaceae: monosulcate
Asteraceae: echinate or spinulose, tricolporate
Cactaceae: pantoporate
Ericaceae: permanent tetrads
Malvaceae: echinate
Mimosoideae (Fabaceae): polyads (usu. in groups of 8)
Rosaceae: tricolpate or tricolporate

Plant Systematics Laboratory \#13 PLANT REPRODUCTIVE BIOLOGY

1) Working in pairs, go outside or to the greenhouse and collect 5 flowers of different types to bring back. Speculate upon and be prepared to discuss the following:
a) Mode of attraction for pollination
b) Mode of reward for pollination
c) Specific type of pollination mechanism
2) Observe visitation of a flower by an insect or bird. If possible, use a video camera to document this visitation. Can you note specific methods by which the animal obtains the reward and, in the process, pollinates the flower? Bring in an example of the flower and draw it (e.g., in longitudinal-section), in order to highlight this.
3) Examine specimens of two species of plants plus any putative hybrids between them.
a) Study both vegetative and floral characters, from original observations or using a Manual of the area, and note which diagnostic features distinguish the two species.
b) Decide upon which characters to measure in the specimens available.
c) Record 10-25 measurements of each of the parameters chosen. Compare these by preparing graphs in order to recognize discontinuities (or lack thereof) of the three taxa.
4) Locate a population of a Composite (Asteraceae) species that has both disk and ray flowers.

Observe insect visitors (potential pollinators) in each of two subsets of plants (or inflorescences): one undisturbed and another with all ray flowers removed. Count the number and type of visitors over a time period (e. g. 10-30 minutes) and record.
5) In the material available, observe ultraviolet light sensitive regions in the perianth by placing a flower into a jar saturated with ammonium vapors. Note that these regions of UV reflectance can be detected by bees.
6) If equipment and materials are available, observe UV fluorescence of pollen tube growth. This is a method of assessing whether or not pollen tubes are growing down a style, and can be used to determine self-compatibility.
7) As a longer-term project, do a caging/emasculating experiment, as explained in your textbook. What can you deduce about reproductive biology from this experiment?
8) Take notes on the movie "Sexual Encounters of the Floral Kind" and record plant names, pollinators, and pollination mechanisms.

Rubric

Rating	1	2	3	Score
Hypothesis of likely pollinator based on: Tube +/-, length Flower color+/Landing platform $+/-$ Odor +/-, type ALL 3 SPECIES	List provides evidence for only 1-2 of floral features	List provides evidence for 3 floral features	List provides evidence for all 4 floral features for all 3 species.	
Observation of pollen transport based on: Position/orientation of anthers Position/orientation of stigma(s) ONLY 1 SPECIES	Drawing shows position/orientation of anthers and stigmas not noted; parts not labeled.	Drawing shows position/orientation of anthers and stigmas not clearly drawn, and/or partially labeled.	Drawing shows position/orientation of anthers and stigmas clearly drawn and labeled.	
Simulation testing transfer of pollen: Pollinator approach Deposition of pollen Transfer of pollen to stigma Effect of flower stage ONLY 1 SPECIES	Demonstrates and explains only 1 of the steps of pollen transfer; does not account for effect of flower stage.	Demonstrates and explains only 2 of the steps of pollen transfer or does not fully account for effect of flower stage.	Demonstrates and explains how pollinator approaches flower, how pollen is deposited on animal, how pollen is transferred to stigma, and how flower stage effects transfer.	
Participation/ Teamwork	One person dominated, others were passive.	Most members participated fully.	All members participated fully.	
Total:				

Plant Systematics Laboratory \#14 PLANT MOLECULAR SYSTEMATICS

1) GENBANK

Log onto GenBank http://www.ncbi.nih.gov/Genbank and perform a search on a species or genus for registered molecular data. For example, under "Entrez", search for the family name Haemodoraceae. Click the Nucleotide: sequence database (GenBank) link. (You should see about 50 entries; if not, repeat the search.) Scroll down all pages and list all types of genes for which sequences are cited. Is each of these a nuclear or chloroplast gene?

2) MACCLADE

Download an example molecular data set from the course web page $<$ http://www.sci.sdsu.edu/plants/ plsys530> and download the "MacClade Molecular Data Set" by holding down the Option key then clicking the link. Open MacClade (from the "dock" in Mac OSX) then open this file.

Observe the data matrix [from Windows menu, select Data Editor (or type Command E)] and view cells in color [from Display menu, select Data Matrix Styles, then Plain Molecular]. Scroll through the data matrix and note the characters and character states. What do these correspond to? Also note the missing data, indicated by a hash mark. Are there any large blocks of missing data? What might these correspond to?

Go to tree mode [from Windows menu, select Tree Window (or type Command T)]. Make sure the tool box shows an arrow tool, then drag the lineage terminating in Kalenchoe to the base of the tree to serve as the outgroup. From the toolbox select the Search Above tool (the first one) and click this icon at the base of the tree. After a time, the shortest tree will be calculated. Ladderize the tree by selecting the Rotate to Lean Right tool (row 2, column 3 of the toolbox) and click this icon at the base of the tree.

Note the monophyletic groups shown. Is your tree similar to others in the class? Is the genus Dudleya (indicated by " D. .") monophyletic? What about the genus Sedum? Re-draw the tree (back).

3) MOLECULAR DATA MATRIX

From the following data matrix, determine the informative characters and character states. Check Figure 14.6 to check your results. What do the characters and character states mean?

> | | 00000000000000000001111111111111111111111 | |
| :--- | :--- | :--- |
| | | 8888888889999999999000000000111111111122 |
| | T2345678901234567890123456789012345678901 | |
| Taxon 1 | GCCTAGCCAAAGCTCTTCCAAGGTGACTCTCAGTTCAAGCT | |
| Taxon 2 | GCCTAGCCAAAGCTCTTCCAAGCTGACTCTCA------GCT | |
| Taxon 3 | GCCTAGCCTAAGCTCAACCAAGGTGTCTCTCAGTTCAAGCT | |
| Taxon 4 | GCCTAGCCTAAGCTCTTCCAAGGTGTCTCTCAGTTCAAGCT | |
| Taxon 5 | GCCTAGCCAAAGCTCTTCCAAGCTGACTCTCA------GCT | |
| Taxon 6 | CCCTAGCCAAAGCTCTTCCAAGCTGACTCTCAGTTCAAGCT | |
| Taxon 7 | CCCTAGCCAAAGCTCTTCCAAGCTGACTCTCAGTTCAAGCT | |
| Taxon 8 | GCCTAGCCTAAGCTCTTCCAAGCTGACTCTCAGTTCAAGCT | |

Informative Characters and Character States

```
Taxon 1
Taxon 2
Taxon 3
Taxon 4
Taxon 5
Taxon 6
Taxon 7
Taxon 8
```


4) RESEARCH ARTICLE

Peruse a research article in plant systematics using molecular data. Answer each of the following: 1) What are the objectives of the study?
2) Read over the Materials and Methods. What gene(s) were sequenced and what is the type of DNA?
3) How many analyses were performed and on what data sets? (I.e., how were the data partitioned?)
4) What was the total number of base pairs of sequence data used, and how many of these were phylogenetically informative for:
a) combined data set
b) gene 1
c) gene 2
5) What is a bootstrap value and how are they determined? What is a decay index value? (see Ch2)
6) For the combined analysis tree, what is the: a) tree length?; b) CI? What do these terms mean? (Ch2)
7) Re-draw (back) the combined analysis tree, collapsing any nodes that have $<70 \%$ bootstrap support.

Plant Systematics Laboratory \#15
 PLANT IDENTIFICATION

OBJECTIVES FOR THIS LABORATORY:

1. Review the basics of identification.
2. Practice identifying plant taxa using available dichotomous keys or polyclave keys.

Concepts of Identification

Examine the material available and review the possible ways that you could identify these plants. For each of these identification methods, discuss which would be most feasible or efficient, and under what conditions? Attempt to try each method.

Dichotomous Keys

Using a local flora, identify each of the available plants. First, examine the basic characteristics of the plant. Then, fill in the following data sheets before attempting to identify using keys. What are the general procedures for using a key? What are some possible pitfalls?
SPECIES \#1:
Plant habit
Leaf shape
Leaf surface (ahaxial)
Leaf venation
Leaf margin
Inflorescence type
Perianth structural type
Calyx fusion
Corolla fusion
Corolla symmetry
Corolla apex posture (in bud)
Androecial_fusion type
Perianth/androecial position_
Ovary position_
Stigma_shape
Carpel_number
Locule number
Placentation
Ovule number/carpel
Eloral formula

SPECIES:
FAMILY:

SPECIES \#2:
Leaf arrangement
Inflorescence type
Perianth fusion type
Perianth cycly
Calyx fusion
Ovary position
Style-number
Carpel_number
Locule number
Ovule number
Placentation
Eloral formula
SPECIES: \qquad FAMILY:

SPECIES \#3:

Leaf arrangement
Leaf_surface_(epidermal_excrescence)
Inflorescence_type
Inflorescence position
Calyx fusion
Calyx symmetry
Corolla fusion
Corolla parts
Corolla_symmetry
Stamen fusion
Stamen arrangement
Ovary nosition
Stigma shape
Carpel_number
Locule number
Placentation
Ovule number/carpel
Eloral formula

SPECIES: _ FAMILY:

SPECIES \#4:

Plant habit
Stem surface
Stem structural type
Leaf arrangement
Leaf venation
Leaf margin
Inflorescence type
Elower orientation
Flower surface (outer)
Perianth/androecial position
Calyx fusion
Calyx symmetry
Corolla fusion
Corolla_symmetry
Stamen position
Ovary position
Style number
Stigma_number
Carpel_number
Locule number
Placentation
Ovule number/carpel
Eloral formula

SPECIES:
FAMILY:

POLYCLAVE KEYS

Using all or some the same plants as above, utilize a polyclave (multiple-entry) key, either using a computer program or (preferably) Web site. [See your instructor for Web addresses.] Write down the characters and the results you obtain below.

What are the advantages of a multiple-entry key? Are there any disadvantages?

Laboratory \#16
 PLANT NOMENCLATURE

Nomenclature Questions

1) Based on taxonomic judgement, a taxonomist decides to split the 60 species of the genus Conostylis into two genera, the new one to be called Blancoa. To which genus does each group of species belong?
2) A taxonomist decides to unite three genera: Audibertia B. Bentham (1876), Ramona E. Greene (1892), and Salvia L. (1753). What is the new genus to be called and why?
3) Medicago polymorpha L. var. orbicularis L. was raised to the rank of species by Bartal. (an abbreviation for Biagio Bartalini).
a) What must the new name be called (including author citation; use the abbreviated name)?
b) Does Bartal. have to retain the name orbicularis by the rules of the ICBN?
c) What is the term we use for the original name, Medicago polymorpha L. var. orbicularis L.? [Note that this can be answered two ways, to be complete.]
4) Suppose, from above, that another species named Medicago orbicularis Smith had already existed.
a) Is the name proposed above (3a) legitimate? Why or why not?
b) What would the name proposed above (3a) by Bartal. be termed?
c) What must Bartal. (or someone else) do now?
5) Eriogonum polifolium Benth. is changed in rank to a subspecies of E. fasciculatum Benth. by Torrey \& A. Gray. What is the new name?
6) I. M. Johnston decides to treat Cryptantha jonesii A. Gray as a variety of Cryptantha muricata (Hooker \& Arnold) Nelson \& J. F. Macbride. Give the full names of the two resulting varieties, including full authorship.
7) What does the "\&" mean in Marsilea vestita Hook. \& Grev.?
8) What does "ex" mean in Havetia flexilis Spruce ex Plach. \& Triana?
9) What does "in" mean in Rhus laurina Nutt. in Torr. \& A. Gray?
10) Abbreviate Malosma laurina (Nutt. in Torrey \& A. Gray) Nutt. ex Abrams.

NOMENCLATURE EXERCISES

Author abbreviations

List the full names and years of birth and death for the following author abbreviations, using the International Plant Names Index http://www.ipni.org.
A. Gray
Benth.
DC.
L.

Nutt.
Torrey

Nomenclatural Changes

Search the name Hosackia strigosa on the International Plant Names Index http://www.ipni.org.

1) Who is author (abbrev. \& full name) and what is the publication (incl. year) from which this name is derived?
2) Do a search for Lotus strigosus and also list the full authorship and publication, incl. the year.
3) Finally, search for Acmispon strigosus and again list the full authorship and publication, incl. the year. What can you deduce from this information?

Synonyms

Search for Cryptantha intermedia on The Plant List http://www.theplantlist.org and record the number of synonyms. List one homotypic and one heterotypic, noting authorship and publications.

Type Specimens

Do a search for the California Academy of Sciences and find the botanical collection. Do a search for Cryptantha mohavensis. [Note: search for the type collection first; if necessary search in the general collection.]

1) Who originally collected this specimen, where, and when?
2) Observe the specimen image close-up. What was the original (basionym) name for this species, including authorship and publication (incl. year)?
3) Find the publication for the basionym on-line. Use the Biodiversity Heritage Library. What does this publication state?
4) What is the publication/year of the current name for this species, Cryptantha mohavensis? Write down the full authorship of this name. [Be sure to think about correctly citing the authorship.]

Do a Google Scholar search for "Novon a new species-Pandanus." [Novon is the name of a journal.] Find a new species publication of this genus Pandanus in this journal. List/note the following:

1) Full species name, including authorship
2) Designation of rank
3) Designation of type (collector(s) and collection number)
4) Location of holotype and isotypes
5) Latin diagnosis
6) Description
7) Illustrations/photographs

International Code of Nomenclature for Algae, Fungi, and Plants

Peruse the ICN http://www.iapt-taxon.org/nomen/main.php. List/note the following:

1) DIVISION 1. PRINCIPLES
2) SECTION 3. Priority, Article 11
3) CHAPTER V. Valid publication of names, Article 32

BOTANICAL NAMES

For selected species, syllabize and accent the scientific names. Practice pronouncing these names according to the rules you have learned. What are alternative ways of pronouncing names?

Use available references and check the web site site http://www.ipni.org to determine the authorship and place/date of publication.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Plant Systematics Laboratory \#17
 PLANT COLLECTING AND DOCUMENTATION

OBJECTIVES FOR THIS LABORATORY:

1. Review the basics of plant collecting.
2. Practice documenting information taken at the time of collecting.

Plant Collecting and Documentation

With a partner, review the proper procedure for collecting plants. Have your partner correct or add to what you recite.

Study the documentation information that should be recorded at the time of a plant collection. Next, with a partner, try to recite as much of this information as you can; have your partner correct or add to what you recite.

During class, go outside and collect both an herb (digging up the entire plants) and a woody shrub or tree. While outside, fill out (for one species only) as much as you can of the documentation sheet(s) on the next pages.

Store the two plants collected, as if you were going to keep them for some time before processing them.

Press the two plants collected above in an herbarium press and dry them in a plant drier.

Plant Mapping

Examine available topographic maps. Practice locating yourself on the map, using various landmarks.

Calculate the latitude and longitude of your location for inclusion in the documentation information.

Calculate the latitude and longitude of another specified location. Compare this with those obtained by the rest of the class.

LOCALITY \#:			
Date of collection:			Time (optional):
Country/State/Province/County/City:			
Specific Locality information:			
Latitude: ___ ${ }^{\text {o }}$	N/S	Longitude:	_o ___ _ W/E
Source/Accuracy of Lat./Long.:			
Township \& Range:			
Elevation (ft or m):			
Landmark information:			
Coll. No.:		Photo. d	doc.:
Collector (primary):			
Associated collector(s):			
Taxon:			
Ann./Bien./Per., Habit, Height, Branching:			
Fl./Fr., colors, other notes:			
Physical Habitat, Substrate:			
Slope, Aspect, Exposure:			
Community/Vegetation type:			
I.d. by:	Date:	I.d. sour	rce:
Accession Number:			

Coll. No.:		Photo. doc.:
Collector (primary)		
Associated collector(s):		
Taxon:		
Ann./Bien./Per., Habit, Height, Branching:		
Fl./Fr., colors, other notes:		
Physical Habitat, Substrate:		
Slope, Aspect, Exposure:		
Community/Vegetation type:		
I.d. by:	Date:	I.d. source:
Accession Number:		

Coll. No.:		Photo. doc.:
Collector (primary)		
Associated collector(s):		
Taxon:		
Ann./Bien./Per., Habit, Height, Branching:		
Fl./Fr., colors, other notes:		
Physical Habitat, Substrate:		
Slope, Aspect, Exposure:		
Community/Vegetation type:		
I.d. by:	Date:	I.d. source:
Accession Number:		

LOCALITY \#:			
Date of collection:			Time (optional):
Country/State/Province/County/City:			
Specific Locality information:			
Latitude: ____ ${ }^{\text {o ____ }}$ - ${ }^{\prime \prime} \mathrm{N} / \mathrm{S}$		Longitude:	
Source/Accuracy of Lat./Long.:			
Township \& Range:			
Elevation (ft or m):			
Landmark information:			
Coll. No.:		Photo. d	doc.:
Collector (primary)			
Associated collector(s):			
Taxon:			
Ann./Bien./Per., Habit, Height, Branching:			
Fl./Fr., colors, other notes:			
Physical Habitat, Substrate:			
Slope, Aspect, Exposure:			
Community/Vegetation type:			
I.d. by:	Date:	I.d. sour	arce:
Accession Number:			

Coll. No.:		Photo. doc.:
Collector (primary):		
Associated collector(s):		
Taxon:		
Ann./Bien./Per., Habit, Height, Branching:		
Fl./Fr., colors, other notes:		
Physical Habitat, Substrate:		
Slope, Aspect, Exposure:		
Community/Vegetation type:		
I.d. by:	Date:	I.d. source:
Accession Number:		

How to use topographic maps

Topographic maps show topographic features of the landscape by means of isoclines, lines representing a single elevation above sea level. Isoclines show changes in elevation and help to visualize three dimensional features such as slopes, flats, canyons, cliffs, and peaks.

The difference in elevation between topographic isoclines is dependent on the scale of the map. A standard USGS (United States Geological Survey) 7.5 minute quad (quadrangle) topographic map has major (thicker-lined) isoclines separated by 100 feet and minor (thinner-lined) isoclines separated by 20 feet; thus, there are 4 minor isoclines between every two major ones (on a continuously increasing or decreasing slope).

Topographic maps also show things like trails, roads (dirt roads, paved streets, and highways), major power lines, buildings or other structures, rivers and other waterways, and general vegetation (e.g., woodland areas). Various coordinates are also indicated. Most commonly, and universally, used are standard longitude and latitude coordinates .

Longitude and latitude are based on imaginary circles drawn on the earth. Each of these circles is divided into 360° (" ${ }^{\circ}$ " = degrees). Each degree may be divided into 60 units termed minutes (represented by the ' symbol), and each minute divided into 60 smaller units termed seconds (represented by the " symbol). Thus, there are 60 minutes in a degree and $60 \times 60=3,600$ seconds in a degree. [At the equator, each degree represents approximately 67 miles in length, each minute a little over 1 mile, and each second approximately 100 feet.] Degrees can be the sole representation of latitude and longitude. For example, $32^{\circ} 16^{\prime} 58^{\prime \prime}$ converts to $32+(16 / 60)+(58 / 3600)=32.2669 \ldots$ degrees.

Lines of longitude are circles that pass through the true north and south poles. Longitude itself is measured from a single line of longitude that passes through Greenwich, England, which by convention represents 0° (zero degrees) longitude. Coordinates of longitude are measured east or west of this reference (termed the Greenwich Meridian or Prime Meridian) to a the other side of that same circle half-way around the world, which represents 180°. Thus, when longitude is measured, it must be stated as either East or West of the prime meridian. For example, the longitude of a region in San Diego, California is $117^{\circ} 07^{\prime} 32^{\prime \prime} \mathrm{W}$ (stated as: 177 degrees, 7 seconds, 32 minutes west); a longitude in Cape Town, South Africa is $18^{\circ} 24^{\prime} 48^{\prime \prime} \mathrm{E}$ (stated as 18 degrees, 24 minutes, 48 seconds east). [Instead of stating "east" versus "west," coordinates of longitudes may be distinguished as positive versus negative numbers, respectively. This is used, e.g., in computerized mapping programs.]

Lines of latitude include the equator itself plus circles that are parallel to the equator and between the equator and the poles. Thus, only the equator itself represents a circle whose plane passes through the earth's center. As lines of latitude get progressively closer to the poles, the circles get smaller and smaller. Coordinates of latitude are measured from the equator, which represents 0° latitude, to either the north or south pole, each representing 90° latitude. Thus, latitude must be stated as either North or South of the equator. For example, the latitude of a region in San Diego, California is $32^{\circ} 45^{\prime} 03^{\prime \prime} \mathrm{N}$ (stated as: 32 degrees, 45 seconds, 3 minutes north); a latitude in Cape Town, South Africa is $33^{\circ} 59^{\prime} 30^{\prime \prime}$ S (stated as 33 degrees, 59 minutes, 30 seconds south). [Coordinates of latitude, like those of longitude, may also be represented as positive versus negative numbers, latitude north being positive and latitude south being negative.]

Plant Community Classification, Identification, and Mapping

(contributed by Robert Lauri)
Plant communities are classified according to structure of canopy, or type, (tree, shrub, or herbaceous) and dominance of taxa. There are a number of common sub-classifications of plant communities within the California Floristic Province. These sub-classifications include, (forest, chaparral, riparian, and sage scrub, etc.), which are further divided into more specific classifications. These more specific classifications are referred to as series and are based on the dominant tree, shrub, or herb in that canopy. The name given to each series is often the common name of the dominant and co-dominant taxa coupled with the sub-classification type. Examples of these within the California Floristic Province are coast live oak woodland, chamise chaparral, white sage scrub, and white alder riparian.

Identifying plant communities can be a very difficult task, especially for the novice. It is common for plant communities to intergrade with one another and have no distinct boundaries. For this reason, it is common practice to identify and map plant communities is many stages. The first stage is to identify plant community canopy types in the field using visual inspection. Each plant community should then be rapidly mapped onto a USGS topography map, using an aerial photograph of the area to assist with the determination of tree versus shrub and herbaceous canopies. This first attempt at mapping the plant communities should be a rough estimate of the locations of each community, and then including identification of each community by visually assessing the dominance of the taxa. The next step in identification of the plant communities is to perform a more thorough evaluation of each by field inspecting them and recording habitat data using the California Native Plant Society (CNPS) Rapid Assessment method, Figure 1. This method allows the botanist to record the plant community and habitat data rapidly i.e. (location, latitude, longitude, history, soil type, dominance of each canopy type etc.) Once the rapid assessment has been completed the data can be compared with the initial field inspection data and revised accordingly. The revised identifications of the plant communities should be updated at this time to reflect the dominance and co-dominance of the taxa found during the rapid assessment. After the identifications have been revised, a final field inspection should be made to ensure that the mapping of the plant communities reflect the plant classification and identification revisions.

Plant community identification and mapping within government agencies and environmental consultants often ends with the rapid assessment method or similar methodology. However, I have found that the more in depth methods that include plant community transects (using belt and quadrangle) can provide more accurate and quantifiable taxa diversity and dominance data. Once the plant community habitats have been assessed, transects can be laid out in representative communities of each series. A minimum of ten transects should be run for each series with twelve data points collected for each belt transect, and four data points collected for each quadrant transect. All transect points are marked in the field with permanent rebar markers, or temporary construction nail markers. Two markers should be used for belt transects and one should be used for quadrant transects. The latitude, longitude, and elevation of the transect line can then be recorded using a GPS unit. Quadrant transects are taken by using a frame (wood or PVC) that is one meter square and split into four equal quadrants (Figure 2). This method is often used for dense herbaceous plant communities near ponds and streams. The transect frame is laid on the ground or over short vegetation, with the taxa then being identified and the coverage of each taxon recorded similar to the belt transects described below. There should be only one or two canopies identified using the quadrant method. For communities with three canopies, the belt transect is the preferred method. Belt transects should be between 50 and 100 meters long in order to collect the desired number of data points. Additional Belt transects may be necessary if twelve data points can not be made for the individual transect. For Belt transects, a 100-meter tape measure is used to span
the appropriate distance within the plant community between two points, (Figure 3). Approximately twelve, one meter squares should then chosen at random along the transect starting at the zero mark. The one-meter square can also be chosen by taking data points at 5 -meter intervals. Once the data point has been chosen a meter stick, or a one-meter square frame can be used to temporarily delimit the area. The taxa that are contained within the data point can then be identified and listed on the data sheet (Figure 4), shortening the taxa name to six letters to reflect the full species name (the first three letters of the genus and specific epithet). After the taxa have been identified, the number of square centimeters of coverage of each taxon, bare soil, rock, and leaf litter should be estimated using the meter stick, and recorded. This should be accomplished by ensuring that the taxa considered are placed into a canopy layer that is considered 100 percent occupied. For the tree canopy there is either open sky, (zero percent canopy), or some percentage of tree cover. For the shrub canopy there are either no shrubs, or a percentage of shrub cover. For the herbaceous canopy there is either bare soil, rock, leaf litter, or some percentage of herbaceous cover. Once the data has been recorded for all the data points for that particular plant community, the data can be combined onto a master data sheet to quantify the dominant and co-dominant taxa for each series and plant community. Once all the data has been combined for each plant community, the community can then be reassessed to ensure the proper identification and classification has been made. This information should then be updated on the plant community map, along with the locations of the transects taken.

CALIFORNIA NATIVE PLANT SOCIETY - VEGETATION RAPID ASSESSMENT FIELD FORM
 (Revised February 5, 2003)

Figure 1 California Native Plant Society Rapid Assessment Form

Figure 2 Quadrant Transect

Figure3 Belt Transect

$\stackrel{\text { \％}}{6}$																					
$\stackrel{\text { O}}{ }$																					
\cdots																					
8																					
∞																					
$\underset{\infty}{\square}$																					
\cdots																					
E																					
6																					
E																					
in																					
E																					
1 8 8																					
E																					
E m m																					
¢																					
I N N																					
¢																					
号																					
E	\|																				
E																					
E																					
会	I									\|							枈	家	㐫		

Laboratory \#18
 HERBARIA AND DATA INFORMATION SYSTEMS

OBJECTIVES FOR THIS LABORATORY:

1. Review the basics of herbarium use and operation.
2. Practice removing and refiling herbarium specimens from the available collection.
3. Practice preparing herbarium labels.

HERBARIUM USE

The SDSU Herbarium

The San Diego State University Herbarium (with the internationally recognized acronym SDSU) contains a moderately large collection of plants (ca. 10,000), primarily of San Diego County and other regions of California, but including collections from the Southwestern United States and Mexico plus some cultivated plants. In addition, the herbarium has several reference books for identification as well as many notebooks containing plant collections of various habitats and regions.

The collection at SDSU is an important teaching resource and has many valuable specimens for research as well. For serious taxonomic work of plants of southern Californian and Mexico, however, one should study the more extensive collections at the San Diego Natural History Museum (SD) in San Diego and the Rancho Santa Ana Botanic Garden (RSA) in Clairemont. In addition, for California plants in general, one should study the specimens of the herbaria at University of California at Berkeley (UC, JEPS), University of California at Davis (DAV), and the California Acacdemy of Sciences (CAS).

In the SDSU Herbarium, specimens are filed alphabetically by family within major plant group categories: PSILOPSIDS, LYCOPODS, SPHENOPSIDS, \& FERNS (Cabinet \#1), CYCADS, GINKGO, CONIFERS, AND GNETALES (Cabinet \#2), ANGIOSPERMOUS DICOTS (Cabinets \#3 - \#14), and ANGIOSPERMOUS MONOCOTS (Cabinets \#15 - \#16). If you do not know the family or the major category of that family, use the Genus List in the Herbarium to determine this information. In addition, families and genera are marked on a sheet attached to the inside of each cabinet door.

Within a family, specimens are filed alphabetically by genus, and within a genus they are filed alphabetically by species. Herbarium specimens are filed in genus folders color-coded according to general locality, as follows:

WHITE-MANILA	$=$	SAN DIEGO COUNTY
GREEN	$=$	CALIFORNIA
BROWN	$=$	U.S. (other than California) \& CANADA
RED	$=$	MEXICO, CENTRAL \& SOUTH AMERICA
BLUE	$=$	CULTIVATED, NOT NATURALIZED

A given genus may have anywhere from one to all five color-coded folders. If there are two or more color-coded folders, they should be placed in the order shown above (i. e., manila on top of green on top of brown, etc.).

You may use the SDSU herbarium by appointment or during general usage times. When using the herbarium, please be considerate of dissecting microscopes, tools, and references in the collection. Clean up after yourself; brush the table of debris (into a trash can) as needed.

Herbarium Use Exercise

You will often want to remove specimens from the collection for observation, e. g., to check the identity of your own plant or simply to study different taxa.

Obtain a list of plant species from your instructor. Locate and remove a specimen of the species
in one of the color-coded genus folders. Remove the entire genus folder from the cabinet. You may wish to slightly pull out the genus folders above or below the desired folder to mark the location. (However, always recheck the labels when filing!) Close the herbarium cabinet door immediately in order to inhibit insect transfer. Carefully transfer the genus folder to an open-space table for observation.

Be sure to handle the herbarium sheets (specimens) very carefully. Use common sense to treat them well. Always hold a specimen with two hands to avoid bending the sheet. Never place anything (e. g., books) on a specimen. Never turn a sheet upside down.

If you wish to scan through a genus folder, open the entire folder on a table with plenty of space. To sort through the specimens, you may remove the sheets on top of the desired specimen (either one at a time or in a group) to the left, and then expose or remove the specimen desired. If you wish, you may gently flip through the labels at the lower right to locate the specimen needed and then remove all of those on top.

Remove and study an herbarium specimen of one of the species to be located. Note the label and its information and the bar-coded accession number. From what general region was the specimen collected?

When finished, replace the specimen in correct alphabetical order within the original genus folder. If a genus folder was removed for a short period of time and not placed in proximity to plants or plant debris, it may be refiled immediately into the collection. However, if there is a chance that insect contamination may have occurred, then freeze ($\mathbf{- 2 0} \mathbf{C}$) the entire genus folder before refiling. Place the folder in the lowermost compartment of the freezer in the herbarium for 1-3 days before refiling. (Generally, an assistant curator will refile these genus folders).

If you are refiling a folder, be extremely careful to file it in the correct location, both by taxonomic category and locality (color-coding). Be sure to put the folders in the correct order of the color-coded system (above). Check list of families/genera on inside of door, which indicates location by column and compartment in the herbarium cabinet. Make any corrections, additions (in pencil only!) on this list as needed for future revision.

HERBARIUM LABEL PREPARATION

Making an Herbarium Label Using FileMaker Pro Database program (Mac version)
[Note: The "Command" key is the one just to the left of the spacebar with an apple/4-leaf clover icon.]

I. Getting Started:

1. Log onto http://herbdata.sdsu.edu and click one of the files. (Only 5 files can be open at any one time; if none work, try again later.) The username is "Admin". Leave password blank.
2. Records should already be entered that you can access, and the file should appear in Browse mode. If not, see 3-7. Otherwise, go the II. Entering Data (below).
3. Before beginning, from the Record menu, select New Record (or type Command-N).
4. To begin entering data, select the Browse mode from the Mode menu.
[FileMaker Pro has four four "Modes:" Browse, Find, Layout and Preview. The mode that loads automatically is the one last used for the document. You will generally be using only two modes: Browse and Preview. To change modes, click onto the Mode menu and you will see that directly below it is the listing for the four modes. Pull down to one of these to change the current mode. (The mode you are currently in will have a check next to it.)]
5. Available layouts are listed by clicking on the rectangle at the upper left of the open data window. Available layouts that we've created are: Data Entry, Labels, Checklist, etc. Click on the rectangle and select Data Entry. (The one currently engaged is checked in the menu; as with the modes, the layout that is loaded is that used last.)
6. In Data Entry layout, you will see a list of fields, e.g, SDSU, Specimen Location, Collector: Lastname, Collector: Firstname, etc. If records have already been entered you will see the entries. At the upper left of the window, you will see an image that looks like a three-ring notebook. Clicking on the pages takes you forward or backward through all the records entered. Pulling that "tab" at the right of the 3-ring notebook takes you quickly through the records.
7. If the Data Entry Layout window is blank, you may begin entering data. If not, create a new record for your data (if one is not already visible) by selecting New Record from the Mode menu.

II. Entering Data:

NOTE: whenever entering data, do not add a blank space at the end of the data entry. E.g, type "Smith" not "Smith ".

NOTE: leave the SDSU and Specimen Location fields blank. These are for filing purposes in the SDSU herbarium.

Note: you may use the tab key to go from one field to another.

1. Click to the right of the field heading, Collector: Lastname. Boxes will appear next to each field heading. This is where you type the information. (If you have collected the data properly in a field notebook, the fields will correspond to all or part of the field collection data.) In the Collector: Lastname box, type the last name of the prmary person who collected the plant. [Remeber: no blank space after this name.] Then move to the next field by either hitting the tab key or by clicking on to the next field "box".
2. Collector: Firstname field, type the full first name and middle initial of the primary collector.
3. Teamcoll field, type the name of the person or persons who helped collect the plant, if there were any. Type first name (or initial) first. Example: "John J. Jones" or "S. E. Gergus \& D. H. Lawrence." [Don't make it too long, however.] Often, it's best to put my name - Michael G. Simpson - here, as I have a general collecting permit.
4. Collection Date field, type the date that the collection was made. Type numerically (not as text), with slashed (" $/$ ") separating numbers, as month/day/year. You need not put zeros in front of the month or day; type the year as four digits. Example: type 3/13/2003 for March 13, 2003.
5. Collection Number field, type the collection number that you assigned the specimen. Example: 3 or 28 or 138. Do not put any zero's before the number. [Note: If your collection number has prefixes or suffixes, e.g., 13III2000A, type these in the Col. Number Prefix and Col. Number Suffix fields. E.g., type 13III in Col. Number Prefix, 2000 in Collection Number, and A in Col. Number Suffix

NOTE: Pop-up menus will appear for many of the entries cited below. If you don't wish to use these pop-up entries, then click the field box again and begin typing. Be sure to confirm each of these entries. It is possible that some recent nomenclatural changes may not be listed in these menus.
6. Country, State/Province, and County boxes type the appropriate information. For country, type "U.S.A." For state, type "California." For county, follow the county name with "Co."; e.g., "San Diego Co."
7. Family field, type the family name of your specimen. Be sure to correctly spell it!
8. Genus field, type the genus name of your specimen. Do not italicize or underline this name, it will be done automatically for you when you print the label.
9. Specific Epithet field, type the specific epithet. As with the genus name, do not italicize or underline.
10. Spec. Authorship field, type the complete author of the species name, abbreviating where appropriate. Example: (L.) Nutt. for (Linnaeus) Nuttall. [Remember: if part of an authorship has parentheses, it will be followed by one or more authors not in parentheses.]

NOTE: If and only if your specimen is a variety or subspecies, type fields 11-13; otherwise go straight to 14 and do not collect $\$ 200$.

11 Infra. Type field, type either var. or ssp. (for variety or subspecies, respectively.
12. Infraspecific Name field, type the subspecific or varietal epithet name. As with the genus and specific epithet fields, you do not italicize or underline.
13. In the Infra Authorship box type the author of the infraspecific (ssp. or var.) name.
14. Latitude: Degrees, Minutes, Seconds and the Longitude: Degrees, Minutes, Seconds fields, type the coordinates if you know them. Do not put the symbol for degrees, minutes or seconds, just the numbers. These symbols will be added when you print the label. Do not use decimal points for any of these! For seconds, round off to the nearest second.
15. Lat Long Source Accur. field, type the source and accuracy of the latitude/longitude coordinates. Examples: USGS 7.5' La Mesa quad, ± 1 " accuracy; GPS unit, ± 1 " accuracy. [Note: to get the " \pm " symbol, hold down both the option and shift key and type " $=$ ".]
16. Elevation in feet field, type the elevation in feet at which the specimen was collected. Only type the number, do not put "ft." or "feet" after the number. As soon as you select on the Elevation in meters box you will see a number. It has already been calculated for you.
17. Identity Determined By field, put the name of the person who identified the specimen, even if it is the same as the collector.
18. Det_Date field, put the date that the specimen was identified, even if it is the same as the collection date. Use the same format that is explained for the collection date box.
19. Det_Source \& Type field, put the reference that was used to identify the specimen. (Ignore and leave blank the Print Date box at the end.)
20. Plant Description field, type the data describing some of the important features of the plant that may not be readily apparent from an herbarium sheet. Describe (if appropriate) in order the plants duration, habit, height, branching pattern, phenology, color, or other features that you find important in identifying the specimen.
21. Habitat Description field, type a few sentences describing the site that the plant was collected from. Describe (if appropriate) in order the physical habitat, substrate, slope, aspect (direction of slope), exposure. Follow this by listing the plant community (vegetation) type.
22. Locality field, type a few sentences explaining where you collected the specimen. You should list any important landmarks that might be useful, distances from known roads, addresses, city, or any other information that would allow someone to use your locality information to find the site where you collected the specimen.

Note: When you are ready to enter another record of a plant collected from the same region, often it is quicker to use this shortcut: First, start another record (Select New Record from Records menu), then, at every blank cell, press Command " to duplicate the entry from the previous entered record.

III. Printing a Label: (Follow these instructions precisely!)

1. To prepare a label, click on the rectangle at the upper left that changes the layout and select Labels. You will see your data (minus some of the row heading which are not normally put on an herbarium label) placed in the label format. This is not exactly what your label will look like so you will want to Preview it before printing.
2. From the Mode menu, select Preview. [If necessary, select Page Setup from the File menu and orient the page from portrait (vertical) to landscape (horizontal).] You will see the label as it will appear when it is printed. If more than one record has been placed in the file, you will see all the labels as they will appear when they are printed. Four labels fit on one page when printed. Make sure that nothing is in error. [Remember: Herbarium labels should be perfect, with no misspellings.] If there are errors, go back to the Data Entry layout and to the Browse Mode and change the information. [If only two, not four, labels appear (and you have more than two), select Page Setup from the File menu and reduce the label size until four labels appear on the page.]
3. If you are in Preview mode and all appears correct, you are ready to Print (File menu).

PRINT ONLY IF YOU ARE VIEWING THE LABELS IN PREVIEW MODE!!!! (DO NOT PRINT IN DATA ENTRY OR BROWSE MODES!!!!)

4. To select only certain labels to print, you may do a search for those labels by any category. To individually select labels to print, do the following:
a. In Data Entry and Browse mode, place today's (or any other single) date in the Print Date field at the lower left of the Data Entry Layout. Remember to type the date as, e.g., 3/3/2000.
b. Type this same date (or copy \& paste from the first record) to all other records you wish to print.
c. Search for all records having this print date by selecting Find from the Mode menu, typing (or pasting) the date in the Print Date field, and clicking "Find." All records with that value will be selected. You may then print them as before.
d. Following a search, to display all of your records again, select Select All from the Edit menu.
ca. $5^{\prime \prime}$ wide

SAN DIEGO STATE UNIVERSITY HERBARIUM
 USA
 CALIFORNIA
 San Diego Co.

Porophyllum gracile Benth.
Perennial subshrub, $30-40 \mathrm{~cm}$ tall, with several branches from base, densely branched above. In flower and fruit. Involucre purple. Corolla white to greenish yellow. Pappus bristles white to purplish. Leaves strongly pungent. Note: Flowers visited by checkerspot butterflies. Material preserved in Carnoy's fixative for chromosomal studies.

Near hiking trail, just east of Oak Canyon, ca. 1.5 miles north of trailhead at Hwy 83 and Ventura Rd., Pickwood State Reserve. Mountain slope. Rocky, sandy loam soil. Slope ca. 30 degrees, south facing, exposed. Open Eriogonum fasciculatum - mixed (Artemisia californica, Malosma laurina) scrub. $32^{\circ} 50^{\prime} 28^{\prime \prime} \mathrm{N} 117^{\circ} 02^{\prime} 59^{\prime \prime} \mathrm{W}$ (USGS 7.5^{\prime} La Mesa quad, ± 1 " accuracy.) Elevation $1,100 \mathrm{ft}$. Ca. 4.7 miles northwest of Wilson Peak.

Cynthia D. Jones 702
24 April 1994 with John J. Smith

APPENDIX 1 PLANT DESCRIPTION

WRITING A PLANT DESCRIPTION

The following list of characters can serve as the basis for a detailed plant description. The basic form of the description is to list the plant organ (noted in bold in the character list below), followed by a listing of all character states that apply for that plant organ, with each character state separated by commas. Note that, for any particular species, not all characters will apply; these are simply omitted. Also note that some characters are listed with multiple character names, e.g., "Sepal/Calyx lobes/Outer tepals." This is designed as a guide, with the intention that only one of these three will be used, depending on whether the outer whorl of the perianth consists of distinct sepals (Sepal used), of fused sepals (Calyx lobes used), or of tepals (Outer tepals used).

There are different styles in writing a detailed plant description. Some use a telegraphic style, e.g., "Leaves simple, sessile, whorled, ovate, entire, glabrous." This style is common in floras, where space for text may be at a premium. Other descriptions use complete sentences, e.g., "Leaves are simple, sessile, whorled, ovate, entire, and glabrous." The use of "the" at the beginning of a sentence is optional, as in "The leaves are simple, sessile, whorled, ovate, entire, and glabrous."

Some general suggestions are as follows:

1. Be sure to only list the plant organs (and list only once), followed by the character states that apply to that plant organ. The major plant organs are sometimes placed in bold text to highlight them. Do not list the specific character names, unless a clarification is needed. Examples:
Do write: "Flowers are bisexual, actinomorphic, pedicellate, $1.5-2.2 \mathrm{~cm}$ long (including pedicel)..." ["Flowers" refers to the plant organ; all other terms are character states.]

Do not write: "Flower sex is bisexual, symmetry is actinomorphic, attachment is pedicellate, length is $1.5-2.2 \mathrm{~cm} .$. ." ["Sex," "symmetry," "attachment," and "length" are characters and should not be listed.]
However, do write: "Leaf blades are elliptic, serrate, rounded at base, obtuse at apex." ["Rounded" and "obtuse" could refer to either of the characters base or apex, so these characters should be listed for clarification.]
2. Description of the major organs may be written in the singular or plural form, but the latter should be used only if more than one such organ occurs in an individual. If only one organ occurs per individual, the singular should be used. Do write: "Leaves are trifoliolate, alternate, ..." or "The leaf is trifoliolate, alternate, ..." if there are multiple leaves. Do write: "The inflorescence is a solitary raceme,..." if there is a single raceme per individual.
3. Always use metric for plant or plant organ heights, lengths, and widths. Always abbreviate these: "mm" for millimeters, "cm" for centimeters, "dm" for decimeters, " m " for meters. Use mm and cm for smaller structures, dm or m for larger. Use the appropriate unit of measure to avoid values less than 1 , if possible. (E.g., write " $2-5 \mathrm{~mm}$ " instead of " $0.2-0.5 \mathrm{~cm}$ ".) Always place a " 0 " before a decimal point, as in " 0.5 mm ." Be clear about what you're describing. Examples:
Do write: "Flowers are $0.5-1.3 \mathrm{~mm}$ long (excluding pedicel), $2-3 \mathrm{~mm}$ wide when fully opened."
Do not write: "Flowers are . $5-1.3 \mathrm{~mm}$."
4. For characters that are variable, either list the range of variation (e.g., "Leaves oblaceolate to narrowly elliptic, crenate to dentate ...") or list the most common morphology and in brackets list the exceptions (e.g., "Leaves trifoliolate [rarely pinnate with 5 leaflets]" or "Leaves 4-7 [2.5-10] cm long . . .").

COMPLETE MORPHOLOGICAL CHARACTER LIST

[Available as download from Website; Note: Not all characters apply to a given taxon; add characters for specialized structures.]
Species/Infraspecies Name (with authorship) [Common Name]:

Family:
Plant Habitat:
Plant Duration:
Plant Sex if not hermaphroditic:
Plant Habit:
Plant Height:
Root Type:
Root Origin (e.g., primary, adventitious):
Underground Stem Type if specialized:
Underground Stem Branching Pattern:
Underground Stem Size:
Aerial Stem Habit:
Aerial Stem Branching Pattern:
Bark Type:
Bark Lenticels presence/shape:
Twig Surface/Shape:
Twig Lenticel presence/shape:
Twig Shape/Cross-Sectional Outline:
Pith Type:
Pith Cross-Sectional Outline:
Fruit Scar presence/shape:
Leaf Scar Size/Shape:
Vascular Bundle Scar Number/Pattern:
Stipule Scar presence:
Stipule Scar Position/Shape if present:
Terminal Bud Scale Scars presence/absence:
Bud Type:
Bud Orientation:
Bud Shape/Size:
Bud Position:
Bud Scale Arrangement:
Bud Scale Surface/Texture:
Thorns if present:
Spines if present:
Prickles if present:
Spur Shoot if present:
Leaves/Leaf Number if unusual:
Leaf Type:
Leaf Length/Width:
Leaf Attachment:
Leaf stipule presence:
Leaf Duration:
Leaf Position if not cauline:
Leaf Arrangement:
Leaf Orientation if discrete:
Leaf Posture if discrete:

Native locality:

Petiole Shape:
Petiole Color:
Petiole Length:
Petiole Orientation:
Stipule Shape:
Stipule Surface adaxial:
Stipule Surface abaxial:
Stipule Length:
IF LEAVES SIMPLE:
Leaf Blade Color if unusual:
Leaf Blade Shape:
Leaf Blade Length:
\qquad
Leaf Blade Width:
\qquad
Leaf Blade Base:
Leaf Blade Margin:
Leaf Blade Apex:
Leaf Blade Apical Process:
Leaf Blade Division:
Leaf Blade Venation:
Leaf Blade Surface adaxial:
Leaf Blade Surface abaxial:
Leaf Blade Texture:

IF LEAVES COMPOUND:
Leaf Outline Shape:
Rachillae Number if decompound:
Leaflets Number if not very large:
\qquad

Leaflet Arrangement:
Leaflet Blade Shape:
Leaflet Blade Attachment:
Leaflet Blade Color if unusual:
Leaflet Blade Length:
Leaflet Blade Width:
Leaflet Blade Base:
Leaflet Blade Margin:
Leaflet Blade Apex:
Leaflet Blade Apical Process:
Leaflet Blade Division:
Leaflet Blade Venation:
Leaflet Blade Surface adaxial:
Leaflet Blade Surface abaxial:
Leaflet Blade Texture:
Petiolule Shape:

Petiolule Color:
Petiolule Length:
Stipel presence:
Stipel Shape:
Stipel Surface adaxial:
Stipel Surface abaxial:
Stipel Length:

Inflorescence Position:
Inflorescence Bract presence:
Inflorescence Type:
Inflorescence Length:
Inflorescence Width
Inflorescence Branch Orientation:
Inflorescence Sex:
Inflorescence Axis Surface:
Flower Sex:
Flower Bract presence:
Flower Length minus pedicel: \qquad
Flower Width minus pedicel: \qquad
Flower Arrangement: \qquad
Flower Orientation: \qquad
Flower Posture:
Flower Symmetry overall:
Flower Attachment:
Pedicel if present Length:
Pedicel if present Shape if unusual:
Bracts/Bractlets No (note inflorescence vs. flower):
Bracts Position:
Bracts Length:
Bracts Color if unusual: \qquad
Bracts Attachment: \qquad
Bracts Shape:
Bracts Base:
Bracts Margin:
Bracts Apex:
Bracts Apical Process: \qquad
Bracts Division
Bracts Venation if unusual:
Bracts Texture if unusual:
Bracts Surface adaxial:
Bracts Surface abaxial:
Receptacle Size if unusual:
Receptacle Shape if evident: \qquad
Hypanthium presence:
Hypanthium Shape: \qquad
Hypanthium Length:
Hypanthium Width:
Perianth Cycly:
Perianth Arrangement if not whorled:

Perianth Type (if homochlamydeous):
Calyx/Outer Tepals Aestivation:
Calyx/Outer Tepals Fusion:
Calyx/Outer Tepals Symmetry:
Calyx/Outer Tepals Length:
Calyx/Outer Tepals Color if not green:
Calyx/Outer Tepals Surface adaxial:
Calyx/Outer Tepals Surface abaxial:
Calyx/Outer Tepals Venation if unusual:
Calyx/Outer Tepals Texture if unusual:
Sepal/Calyx Lobes/Outer Tepals Merosity:
Sepal/Calyx Lobes/O.T. Length:
Sepal/Calyx Lobes/O.T. Shape:
Sepal/Calyx Lobes/O.T. Base:
Sepal/Calyx Lobes/O.T. Margin:
Sepal/Calyx Lobes/O.T. Apex:
Sepal/Calyx Lobes/O.T. Apical Process:
Corolla Type (if dichlamydeous):
Corolla/Inner Tepals Aestivation:
Corolla/Inner Tepals Fusion:
Corolla/Inner Tepals Cycly if not uniseriate:
Corolla/Inner Tepals Color:
Corolla/Inner Tepals Symmetry:
Corolla/Inner Tepals Length:
Corolla/Inner Tepals Surface:
Corolla/Inner Tepals Venation if unusual:
Corolla/Inner Tepals Texture if unusual:
Petal/Corolla Lobes/Inner Tepals Merosity:
Petal/Corolla Lobe/I.T. Shape:
Petal/Corolla Lobe/I.T. Base:
Petal/Corolla Lobe/I.T. Margin:
Petal/Corolla Lobe/I.T. Apex:
Petal/Corolla Lobe/I.T. Length:
Petal/Corolla Lobe/I.T. Orientation:
Petal/Corolla Lobe/IT. Posture:
Stamens (Androecium) Cycly:
Stamens (Androecium) Merosity:
Stamen Type:
Stamen Attachment:
Stamen Arrangement:
Stamen Position:
Stamen Insertion if applicable:
Stamen Fusion:
Staminodes if present No:
Staminodes if present Pos:
Staminodes if present Size:
Staminodes if present Shape:
Filament Shape/Color:
Filament Length:
Anthers Attachment:
\qquad
\qquad
\qquad
\qquad
———
\qquad
\qquad

Anther Type:
Anther Dehiscence Type:
Anther Dehiscence Direction:
Anther Color:
Anther Length:
Anther Shape:
Anther Thecae Arrangement:
Connective Morphology if unusual:
Pollen color:
Gynoecium Fusion:
Perianth Androecial Position:
Ovary Position:
Ovary Attachment if not sessile:
Ovary Color:
Ovary Length:
Ovary Shape:
Ovary Surface:
Styles Number per pistil:
Style Position:
Style Shape/Color:
Style Disposition/Length:
Stigmas Number: \qquad
Stigmas Position: \qquad
Stigmas Shape:
Stigmas Surface:
\qquad

Nectaries presence/absence: \qquad
Nectary Type/Position:
Carpels Number:
Median Carpel Position relative to stem axis:
Locules Number:
Placentation:
Placenta Shape/Position if unusual:
Ovules Number per carpel:
Ovule Type:
Ovule Position: \qquad
Fruit Type:
Fruit Color:
\qquad
Fruit Shape:
Fruit Length/Width: \qquad
Fruit Surface:

Seed Color:
Seed Shape:
Seed Length:
Seed Surface:
Funiculus Length:
Funiculus Shape:
Aril presence:
Aril Size:
Aril Shape:
Aril Position:
Seeds Nutritive Tissue:
Embryo Type Size/Shape/Position:
Cotyledon Position:
Radicle Position:
Seedling Type:
FLORAL FORMULA:

P	A	G
or K	C	A

Note: List number of parts after each symbol:

$\mathbf{P}=$ \# perianth parts or tepals (outer + inner whorls)
or $\mathbf{K}=$ \# sepals or calyx lobes $\mathbf{C}=$ \# petals or corolla lobes
$\mathbf{A}=$ \# stamens of androecium (outer + inner whorls)
$\mathbf{G}=$ \# carpels of gynoecium (add ovary position)
() = fusion of parts [] = rare numbers of parts
Optional:
$\mathbf{K}_{\mathbf{z}}=$ zygomorphic calyx; $\mathbf{C}_{\mathbf{z}}=$ zygomorphic corolla; etc.
E. g., $\quad \mathbf{K}(5) \quad \mathbf{C}_{\mathbf{z}}$ (5) $\quad \mathbf{A} 5$ [4] \mathbf{G} (2), inferior = calyx synsepalous with 5 lobes corolla zygomorphic, sympetalous with 5 lobes stamens 5 , rarely 4 , distinct, in one whorl gynoecium syncarpous, carpels 2, ovary inferior
E.g., $\quad \mathbf{P} 3+3 \quad$ A $3+3 \quad$ G 3, superior
$=$ perianth apotepalous with 3 outer and 3 inner tepals stamens 6, distinct, in two whorls: 3 outer +3 inner gynoecium apocarpous, carpels (pistils) 3, ovaries superior

Appendix 2. Plant Morphology Review

ROOTS, STEMS, SHOOTS

Name the major plant organs.
What are the continuously actively dividing cell regions of a plant called and where are they located?
What is meant by plant habitat and what are the types of plant habitat?
What is meant by plant habit and what are the types of plant habit?
What is the function of roots?
What is a shoot?
What is a bud, where do buds typically develop, and what do they develop into?
Define node, internode.
What is stem habit and what are some types of stem habits?
What is the difference between monopodial and sympodial? To what character do these belong?

LEAVES

What is the difference between a bract and a scale?
From what is a phyllode derived?
Name three modifications of leaves found in carnivorous plants.

FLOWERS

Draw a typical flower and label all the parts, including collective terms.
Name the two basic types of flower sex.
Name the three basic types of plant sex. What is the corresponding type of flower sex for each?
What is the difference between protandrous and protogynous?
What are the two major types of perianth arrangement?
What is perianth cycly?
What is the difference between dichlamydeous and homochlamydeous?
What is a nectary and what are some types of nectaries?
What is the difference between a gynoecium, carpel, and pistil?
What are the 3 parts of a pistil? What is a locule?
How is carpel number determined?
Name the stalks/axes: pedicel, peduncle, petiole, petiolule, rachis, rachilla.

INFLORESCENCES

Name two types of inflorescence position.
What is the difference between determinate and indeterminate inflorescence development?
What is a dichasium?
How does a monochasium differ and what are two major types?

FRUITS \& SEEDS

What are the differences between a simple, aggregate, and multiple fruit?
What is the difference between endospermous and exalbuminous?
GENERAL TERMS
What is the difference between cycly and merosity? Give an example of each.
What is the difference between coriaceous and indurate? between scarious and succulent? What is the character for these?
What is the difference between connate and distinct? between adnate \& free? between adherent \& coherent? What is the character for these?
What is the difference between position. arrangement. and orientation?
What is the difference between transverse posture and longitudinal posture?
Surface refers to 3 features: configuration, epidermal excrescence, and vestiture. How do they differ?
What is the difference between glabrous, glaucous, and viscid?
What is the difference between annual, biennial, and perennial? For what character are these character states?
What is the difference between caducous and accrescent? For what character are these character states?

Shape: Plane

Shape: 3-D

Apex Shape

\qquad
Division
\qquad

Posture: Longitudinal

Leaf Position

Bristle Types

Trichome Types

Calyx Fusion (top line)
Corolla Fusion (bottom line)

\qquad

Symmetry

\qquad

Aestivation

Androecial / Stamen Fusion

\qquad

Anther Dehiscence Types

Gynoecial Fusion

Perianth-Androecial Position

Style Position

Inflorescence Types

CULTIVATED TREES OF

SAN DIEGO STATE

UNIVERSITY

> Prepared by Michael Simpson, Gladys Baird, Linda Foster, and Scott McMillan, with contributions from Janice Curl, Ben Vine, Wende Wheeler, Jim Wilson, Theresa Wilkinson, and Nathan Authement

> Department of Biology, San Diego State University, San Diego, CA 92182

(Revised July 2006; please send additions and revisions to Dr. Michael Simpson at the above address, or to: msimpson@sunstroke.sdsu.edu)

TAXA IN alphabetical order of species name abbreviation

Abbr.	Scientific name [Synonyms]	Common name	Family	Native range
ACja	Acer japonicum	Japanese Maple	Aceraceae	Japan
AClo	Acacia longifolia	Sydney Golden Wattle	Fabaceae	e. Australia
ACpe	Acacia pendula	Weeping Acacia	Fabaceae	e. Australia
ACsm	Acmena smithii	Lilly-Pilly	Myrtaceae	Australia
$A C \mathrm{sp}$	Acacia sp.		Fabaceae	
AGfl	Agonis flexuosa	Peppermint Tree	Myrtaceae	w. Australia
AGro	Agathis robusta	Queensland Kauri	Araucariaceae	n. e. Australia
ALar	Alöe arborescens	Candelabra A., Torch Pl.	Liliaceae	South Africa
ALfo	Aleurites fordii	Tung Oil Tree	Euphorbiaceae	central Asia
ALju	Albizia julibrissin	Mimosa Tree, Silk Tree	Fabaceae	Iran to Japan
ALrh	Alnus rhombifolia	White Alder	Betulaceae	w. North America
ARal	Archontophoenix alexandrae	Alexandra Palm, King P.	Arecaceae	n. e. Australia
ARar	Araucaria araucana	Monkey Puzzle	Araucariaceae	Chile
ARbi	Araucaria bidwillii	Bunya-Bunya	Araucariaceae	n. e. Australia
ARcun	Araucaria cunninghamii	Hoop-Pine	Araucariaceae	e. Australia
ARcu	Archontophoenix cunninghamiana	King Palm	Arecaceae	e. Australia
ARhe	Araucaria heterophylla	Norfolk Island-Pine	Araucariaceae	Norfolk I., Australia
ARun	Arbutus unedo	Strawberry-Tree	Ericaceae	s. Europe, Ireland
BAbl	Bauhinia blakeana	Hong Kong Orchid Tree	Fabaceae	Canton, China
BAva	Bauhinia variegata	Purple Orchid Tree	Fabaceae	India, China
BRac	Brachychiton acerifolius	Flame Tree	Sterculiaceae	e. Australia
BRar	Brahea armata	Mexican Blue Palm	Arecaceae	Baja Calif., Mexico
BRed	Brahea edulis	Guadelupe Island Palm	Arecaceae	Baja Calif., Mexico
BRdi	Brachychiton discolor	Scrub Bottle Tree	Sterculiaceae	cent.-n., e. Australia
BUca	Butia capitata	Pindo Palm, Jelly Palm	Arecaceae	Brazil, Urug., Argent.
CAca	Carpephyllum cafrum	S. African Plum	Sapindaceae	South Africa
CAci	Callistemon citrinus	Bottlebrush	Myrtaceae	s. e. Australia
САси	Casuarina cunninghamiana	River She-Oak	Casuarinaceae	e. Australia
CAmi	Caryota mitis	Fishtail Palm	Arecaceae	Myanmar-Java, Phil.
CAsp	Caesalpinia spinosa	Tara	Fabaceae	w. South America
CAvi	Callistemon viminalis	Weeping Bottlebrush	Myrtaceae	Australia: N.S.W.
CEde	Cedrus deodara	Deodar Cedar	Pinaceae	Himalayas
CEli	Cedrus libani	Cedar of Lebanon	Pinaceae	Asia Minor
CEsi	Ceratonia siliqua	Carob, St. John's Bread	Fabaceae	e. Mediterranean
CHhи	Chamaerops humilis	Mediterranean Fan Palm	Arecaceae	Mediterranean
CHpl	Chiranthodendron pentadactylon	Monkey Hand Tree	Malvaceae [Bombac.]	s. Mexico, Guatemala
CHsp	Chorisia speciosa	Floss-Silk Tree	Malvaceae [Bombac.]	Brazil, Argentina
CIca	Cinnamomum camphora	Camphor Tree	Lauraceae	China, Japan
COau	Cordyline australis	Palm-Lily	Agavaceae	New Zealand
COdi	Cordia dichotoma	Cordia	Boraginaceae	
COla	Cocculus laurifolius	Laurel-Leaf Snailseed	Menispermaceae	Himalayas
COlac	Cotoneaster lacteus	Cotoneaster	Rosaceae	w. China
COsp	Cotoneaster sp.	Cotoneaster	Rosaceae	
COst	Cordyline stricta	Australian Dracaena	Agavaceae	subtrop. Australia
CRag	Crotolaria agatiflora	Bird's Beak	Fabaceae	
CUan	Cupaniopsis anacardioides	Carrot Wood Tree	Sapindaceae	Australia

Plants of San Diego State University

CUgu	Cupressus guadalupensis forbesii	Tecate Cypress	Cupressaceae	s. California
CUla	Cunninghamia lanceolata	China Fir	Taxodiaceae	China
CUma	Cupressus macrocarpa	Monterey Cypress	Cupressaceae	Monterey Co., CA.
CUse	Cupressus sempervirens	Italian Cypress	Cupressaceae	s. Europe, w. Asia
CUsp	Cupressus sp.	Cypress	Cupressaceae	
CYob	Cydonia oblonga	Quince	Rosaceae	Mediterranean region
DOvi	Dodonaea viscosa 'purpurea'	Hopseed	Sapindaceae	Ariz,S.Am,OW trop.
DRdr	Dracena draco	Dragon Tree	Agavaceae	Canary Islands
ERca	Erythrina caffra	Coral Tree	Fabaceae	E. S. Africa
ERco	Erythrina coralloides	Naked Coral Tree	Fabaceae	Warm temp.\&tropics
ERja	Eriobotrya japonica	Loquat	Rosaceae	China
ESex	Escallonia xexoniensis	Escallonia	Saxifragaceae	Cultivar
ESgr	Escallonia grahamiana[E. illinita]	Escallonia	Saxifragaceae	Chile
EUca	Eucalyptus camaldulensis	Red River Gum	Myrtaceae	Australia
EUci	Eucalyptus citriodora	Lemon Scented Gum	Myrtaceae	Queensland, Austral.
EUcl	Eucalyptus cladocalyx	Gum	Myrtaceae	Australia
EUco	Eucalyptus cornuta	Gum	Myrtaceae	Australia
EUfi	Eucalyptus ficifolia	Red Flowering Gum	Myrtaceae	West Australia
EUgl	Eucalyptus globulus	S. Blue Gum	Myrtaceae	Australia: NSW,W.A.
EUle	Eucalyptus leucoxylon	White Ironbark	Myrtaceae	Australia
EUma	Eucalyptus maculata	Spotted Gum	Myrtaceae	Australia
EUpo	Eucalyptus polyanthemos	Gum	Myrtaceae	Australia
EUpu	Euphorbia pulcherrima	Poinsettia	Euphorbiaceae	Mexico
EUri	Eucalyptus risdonii [Angophora r.]	Gum	Myrtaceae	Australia
EUsi	Eucalyptus sideroxylon	Red Ironbark	Myrtaceae	Australia
EUsp	Eucalyptus sp.		Myrtaceae	Australia
EUti	Euphorbia tirucalli	Milkbush	Euphorbiaceae	Malabar, India
EUto	Eucalyptus torquata	Gum	Myrtaceae	Australia
EUvi	Eucalyptus viminalis	Manna Gum	Myrtaceae	Southern Australia
FEse	Feijoa sellowiana	Pineapple-Guava	Myrtaceae	S. South America
FIbe	Ficus benjamina	Weeping Fig	Moraceae	India
FIca	Ficus carica	Edible Fig	Moraceae	Mediterranean region
FIel	Ficus elastica	Rubber Tree	Moraceae	Nepal,Assam,Myan.
FIni	Ficus nitida [F. microcarpa v. n.]	Indian Laurel Fig	Moraceae	India
FIru	Ficus rubiginosa	Rusty Fig	Moraceae	Australia
FIsp	Ficus sp.	Fig	Moraceae	
FRsp	Fraxinus sp.	Ash	Oleaceae	
FRuh	Fraxinus uhdei	Shamel Ash	Oleaceae	Mexico
GIbi	Ginkgo biloba	Maidenhair Tree	Ginkgoaceae	E. China
HAca	Harpephyllum caffrum	Kaffir Plum	Anacardiaceae	S. Africa
HEar	Heteromeles arbutifolia	Toyon	Rosaceae	
HOfo	Howea forsteriana	Thatch Palm	Arecaceae	Lord Howe I. Austr.
HYfl	Hymenosporum flavum	Sweetshade	Pittosporaceae	Australia
ILco	Ilex cornuta	Chinese or Horned Holly	Aquifoliaceae	China
JAmi	Jacaranda mimosifolia	Jacaranda	Bignoniaceae	N. W. Argentina
$J U s p$	Juniperus sp.	Juniper	Cupressaceae	
KIaf	Kigelia africana [K. pinnata]	Sausage Tree	Bignioniaceae	Africa
KObi	Koelreuteria bipinnata	Chinese Lantern Tree	Sapindaceae	China, Japan
KOel	Koelreuteria elegans	Chinese Lantern Tree	Sapindaceae	China, Japan

KOsp	Koelreuteria sp.		Sapindaceae	
LAin	Lagerstroemia indica	Crape-Myrtle	Lythraceae	China
LEsc	Leptospermum scoparium	Manuka Tea Tree	Myrtaceae	N. Zealand; Austral.
LIst	Liquidambar styraciflua	Sweet Gum	Hamamelidaceae	SE US, Mexico
MAgr	Magnolia grandiflora	Southern Magnolia	Magnoliaceae	NC. to FL, TX
MAla	Malosma laurina	Laurel Sumac	Anacardiaceae	S. Calif. to Baja
MAob	Markhamia obtusifolia	Markhamia	Bignoniaceae	Trop. Africa
MAsp	Markhamia sp.	Markhamia	Bignoniaceae	
MEex	Metrosideros excelsus	N. Zeal. Christmas Tree	Myrtaceae	New Zealand
MEgl	Metasequoia glyptostroboides	Dawn Redwood	Taxodiaceae	China
MEne	Melaleuca nesophila	Western Tea Myrtle	Myrtaceae	Australia
MEqu	Melaleuca quinquenervia	Cajeput Tree	Myrtaceae	Australia
MIdo	Michelia doltsopa		Magnoliaceae	Asia
MUpa	Musa paradisiaca	Banana	Musaceae	India
MYla	Myoporum laetum	Guitarwood	Myoporaceae	New Zealand
OLeu	Olea europaea	Olive	Oleaceae	Mediterranean region
PEam	Persea americana	Avocado	Lauraceae	Trop. Amer.
PHCa	Phoenix canariensis	Canary Island Date Palm	Arecaceae	Canary Islands
PHda	Phoenix dactylifera	Date Palm	Arecaceae	W. Asia \& N. Africa
PHre	Phoenix reclinata	Senegal Date Palm	Arecaceae	Tropical Africa
PHro	Phoenix roebelinii	Dwarf Date Palm	Arecaceae	Laos
PIca	Pinus canariensis	Canary Island Pine	Pinaceae	Canary Islands
PIcr	Pittosporum crassifolium	Karo	Pittosporaceae	New Zealand
PIeu	Pittosporum eugenioides		Pittosporaceae	Australia
PIha	Pinus halepensis	Aleppo Pine	Pinaceae	Mediterranean region
PIpi	Pinus pinea	Italian Stone Pine	Pinaceae	Mediterranean region
PIra	Pinus radiata	Monterey Pine	Pinaceae	S. California
PIsp	Pinus sp.	Pine	Pinaceae	
PIte	Pittosporum tenuifolium		Pittosporaceae	
PIth	Pinus thunbergii	Japanese Black Pine	Pinaceae	Japan
PIto	Pinus torreyana	Torrey Pine	Pinaceae	S. California
PIun	Pittosporum undulatum	Victorian Box Tree	Pittosporaceae	Australia
PIvi	Pittosporum viridiflorum	Cape Pittosporum	Pittosporaceae	S. Africa
PLac	Platanus acerifolia	London Plane Tree	Platanaceae	North America
PLor	Platycladus orientalis [Thuja o.]	Oriental Arbor Vitae	Cupressaceae	N. China; Korea
PLra	Platanus racemosa	Western Sycamore	Platanaceae	Calif.; Baja Calif.
PLsp	Platanus sp.	Sycamore	Platanaceae	
POfr	Populus fremontii	Fremont Cottonwood	Salicaceae	California; Arizona
POgr	Podocarpus gracilior	East African Fern Pine	Podocarpaceae	Tropical Africa
POma	Podocarpus macrophyllus	Japanese Yew Pine	Podocarpaceae	Japan
POmak	Podocarpus macrophyllus v. maki	Yew Pine	Podocarpaceae	Japan
PRar	Prunus armenica	Common Apricot	Rosaceae	China
PRce	Prunus cerasifera atropurpurea	Purple-Leaf Plum	Rosaceae	Cen. Asia to Balkans
PRdu	Prunus dulcis	Almond	Rosaceae	Mediterranean region
PRly	Prunus lyonii	Catalina Cherry	Rosaceae	Islands off S. Calif.
PRpe	Prunus persica	Peach	Rosaceae	Asia
PRsp	Prunus sp.	Cherry	Rosaceae	
PUgr	Punica granatum	Pomegrante	Punicaceae	Mediterranean region
PYka	Pyrus kawakami	Evergreen Pear	Rosaceae	Taiwan

Plants of San Diego State University

QUsp	Quercus sp.
QUsu	Quercus suber
RHov	Rhus ovata
SAba	Salix babylonica
SAsp	Salix sp.
SCac	Schefflera actinophylla
SCmo	Schinus molle
SCte	Schinus terebinthifolius
SEse	Sequoia sempervirens
SPca	Spathodea campanulata
STni	Strelitzia nicolai
SYja	Syzygium jambos
SYpa	Syzygium paniculataum
SYro	Syagrus romanzoffiana
SYsp	Syzygium sp.
TAap	Tamarix aphylla
TAcr	Taiwania cryptomeroides
TAcu	Taxus cuspidata
TAdi	Taxodium distichum
TAmu	Taxodium mucronatum
TAro	Tabebuia rosea
TAsp	Tabebuia sp.
TEar	Tetraclinis articulata
THpe	Thevetia peruviana
TIti	Tipuana tipu
TRco	Tristania conferta
TRfo	Trachycarpus fortunei
TUca	Tupidanthus calyptratus
ULpa	Ulmus parvifolia
WAro	Washingtonia robusta
WIca	Wigandia caracasana
WIce	Widdringtonia cedarbergensis
XYco	Xylosma congestum
YUgl	Yucca gloriosa

Oak	Fagaceae	
Cork Oak	Fagaceae	S. Europe, N. Africa
Sugarbush	Anacardiaceae	S. \& Baja CA.,Ariz.
Weeping Willow	Salicaceae	
Willow	Salicaceae	
Umbrella Tree	Araliaceae	Queensland, Australia
Peruvian Pepper Tree	Anacardiaceae	Andes of Peru
Brazilian Pepper Tree	Anacardiaceae	Brazil
Redwood	Taxodiaceae	S. Oregon - cen.CA.
African Fountain Tree	Bignoniaceae	Tropical Africa
Giant Bird of Paradise	Strelitziaceae	South Africa
Rose Apple	Myrtaceae	
Eugenia, Brush Cherry	Myrtaceae	Australia
Queen Palm	Arecaceae	Cen. Brazil - Argent.
	Myrtaceae	
Tamarisk	Tamaricaceae	
	Taxodiaceae	Taiwan, Asia
Japanese Yew	Taxaceae	Japan,Korea,Manch.
Bald Cypress	Taxodiaceae	Del. to Fla., La.
Montezuma Cypress	Taxodiaceae	Cen. Mex. to Pac.
Roble Blanco	Bignoniaceae	
Trumpet Tree	Bigoniaceae	Trop. America
Arar Tree	Cupressaceae	Malta, Spain, n. Afr.
Yellow Oleander	Apocynaceae	Tropical America
Tipu Tree	Fabaceae	Southern Brazil
Brisbane Box	Myrtaceae	Australia
Windmill Palm	Arecaceae	E. Asia
	Araliaceae	Tr. Asia: Ind.-Camb.
Chinese Elm Tree	Ulmaceae	China, Japan
Mexican Fan Palm	Arecaceae	Mexico: Son.\& B.C.
	Hydrophyllaceae	Tropical America
African Cypress	Cupressaceae	S.W. Cape, S. Afr.
	Flacourtiaceae	China
Spanish Dagger	Agavaceae	U.S.: N. Car. - FL.

NORTHWEST SDSU CAMPUS

NORTHEAST SDSU CAMPUS

SOUTHWEST SDSU CAMPUS

SOUTHEAST SDSU CAMPUS

CULTIVATED SHRUBS AND HERBS OF SAN DIEGO STATE UNIVERSITY

Acacia longifolia		Fabaceae	Australia
Acacia redolens		Fabaceae	Australia
Agapanthus africanus	Lily-of-the-Nile	Liliaceae	Cape region, S. Afr.
Alocasia macrorhiza		Araceae	
Alyogyne huegelii [Hibiscus huegelii]	Blue Hibiscus	Malvaceae	S. \& W. Australia
Aspidistra elatior	Cast-Iron Plant	Liliaceae	China
Asplenium daucifolium	Spleenwort	Polypodiaceae	Mauritius,Reunion I.
Beloperone brandegeana	Shrimp Plant	Acanthaceae	Mexico
Brahea edulis	Guadelupe Palm	Arecaceae	Guadelupe Is., Mex.
Caesalpinia		Fabaceae	
Calliandra haematocephala	Powderpuff	Fabaceae	Bolivia
Calodendrum capense	Cape Chestnut	Rutaceae	S. Africa
Camellia sasanqua	Camellia	Theaceae	China, Japan
Carissa grandiflora	Natal Plum	Apocynaceae	Natal, S. Africa
Ceanothus thyrsiforus	Blue Brush	Rhamnaceae	N. CA.-S. Oregon
Chasmanthe aethiopica		Iridaceae	South Africa
Clivia miniata	Kaffir Lily	Amaryllidaceae	South Africa
Clytostoma callistegioides	Argentine Trumpet Vine	Bignoniaceae	S. Brazil, Argentina
Cordyline terminalis	Ti	Agavaceae	e. Asia
Cotoneaster lacteus		Rosaceae	W. China
Cotoneaster pannosa		Rosaceae	SW China
Crytomium falcatum	House Holly Fern	Polypodiaceae	Jap,China,S.Afr, Poly
Cycas revoluta	Sago Palm	Cycadaceae	Java
Doxantha unguis-cati	Cat's Claw	Bignoniaceae	W. Indies to Argentina
Dracaena fragrans	Corn Plant	Agavaceae	W. Africa: Upper Guinea
Dryopteris erythrosora	Japanese Shield Fern	Polypodiaceae	China,Japan
Duranta repens	Golden Dewdrop	Verbenaceae	W. Indies, Mex.-Brazil
Echium fastuosum	Pride of Madiera	Boraginaceae	Coastal Eur.; Canary I.
Equisetum hyemale		Equisetaceae	
Feijoa sellowiana	Pineapple Guava	Myrtaceae	South America
Furcraea sp.		Agavaceae	Brazil
Grewia occidentalis	Lavender Star Flower	Tiliaceae	S. Africa
Harpullia pendula	Tulipwood	Sapindaceae	E. Africa
Hedychium coronarium	Butterfly-Lily	Zingiberaceae	India, Malaysia
Hibbertia scandens	Guinea Gold Vine	Dilleniaceae	Australia
Hibiscus rosa-sinensis	China-Rose	Malvaceae	China
Iva hayesiana		Asteraceae	San Diego Co.; Baja Ca.
Lantana camara	Lantana	Verbenaceae	Trop. Amer. to TX, GA
Lantana montevidensis	Trailing Lantana	Verbenaceae	S. Amer.
Lavatera assurgentiflora	Malva Rose	Malvaceae	Santa Barbara Islands
Lonicera japonica var. halliana	Hall's Honeysuckle	Caprifoliaceae	E. Asia
Lonicera hildebrandiana	Giant Honeysuckle	Caprifoliaceae	Myanmar (Burma)
Mahonia aquifolium	Holly Mahonia, Barberry	Berberidaceae	Brit. Col.-Idaho;Oregon
Myrtus communis 'Compacta'	Myrtle	Myrtaceae	W. Asia, Mediter.
Nandina domestica	Heavenly Bamboo	Beriberidaceae	China, Japan
Nemesia fruticans		Plantaginaceae	
Nerium oleander	Oleander	Apocynaceae	Mediterranean to Japan.

Nephrolepis cordifolia
Phaedranthus buccinatorius
Philodendron selloum
Photinia fraseri
Phyllostachys aurea
Pittosporum rhombifolium
Pittosporum tobira
Pittosporum tobira var. variegatum
Prunus cerasifera
Punica granatum
Pyracantha sp.
Raphiolepis indica
Raphiolepis umbellata f. ovata
Saccharum officinarum
Solandra maxima
Sphaeroptis cooperi
Strelitzia reginae
Syzygium paniculatum
Tabebuia rosea
Tecomaria capensis
Trachelospermum jasminoides
Tupidanthus calyptratus
Viburnum tinus
Wisteria sinensis

Sword Fern	Polypodiaceae	Tropics and subtropics
Blood Trumpet Vine	Bignoniaceae	Mexico
	Araceae	S. Brazil
	Rosaceae	S. \& E. Asia
Golden Bamboo	Poaceae	China, Japan
Queensland Pittosporum	Pittosporaceae	Australia
Mock Orange	Pittosporaceae	Australia
Japanese Pittosporum	Pittosporaceae	China; Japan
	Pinaceae	
Pomegranate	Punicaceae	S. Asia
Firethorn	Rosaceae	SE Europe, Asia
Indian Hawthorn	Rosaceae	S. China
Yeddo Hawthorn	Rosaceae	Japan, Korea
Sugar Cane	Poaceae	prob. Asia or E. Indies
Cup o' Gold	Solanaceae	Mexico
Australian Tree Fern	Cyatheaceae	Australia
Bird of Paradise	Strelitziaceae	South Africa
Australian Brush Cherry	Myrtaceae	Australia
Rosy Trumpet Vine	Bignoniaceae	Mex. - Venez., Ecuador
Cape Honeysuckle	Bignoniaceae	South Africa
Star Jasmine	Apocynaceae	China
Lauretinus	Araliaceae	India to Cambodia
	Caprifoliaceae	Mediterranean region
	Fabaceae	China

GENERAL REFERENCES ON CULTIVATED PLANTS:

Bailey, L. H. 1951. Manual of Cultivated Plants. Macmillan Publishing Co., Inc., New York.
Bailey, L. H. 1976. Hortus Third. Macmillan Publishing Co., Inc., New York.
Graf, A. B. 1976. Exotica, Series 3. Pictorial cyclopedia of exotic plants from tropical and near-tropical regions. 9th ed. Roehrs Company, Inc., E. Rutherford, New Jersey, U. S. A. [NOTE: A more updated version is available in the science reference section of the library.]
Graf, A. B. 1986. Tropica. Color Cyclopedia of Exotic Plants and Trees. 3rd Edition. Roehrs Company, Inc., E. Rutherford, New Jersey, U. S. A.
Ritter, M. 2011. A Californian's Guide to the Trees Among Us. Heyday, Berkeley, California.

